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Abstract: Despite an increase in women’s educational attainment, they remain largely underrepre-

sented in science, technology, engineering, and mathematics (STEM), especially in elite institutions. This

paper examines the gender gap among highly selected STEM students in France. Using detailed adminis-

trative data from various sources, we show that although female students self-select more than male stu-

dents to enter selective undergraduate STEM programs, they underperform in the competitive entrance

examinations for elite STEM graduate schools, even when conditional on their academic achievement. We

also observe an increasing gender gap over the time spent in undergraduate STEM programs, which is the

main driving force behind the gender gap in access to elite STEM graduate schools. We thus explore the

role of the learning environment during exam preparation. Specifically, we leverage variations in learning

environments created by tracking within these selective undergraduate STEM programs to examine how

heightened competitiveness during exam preparation affects gender performance gaps. Our findings

reveal that increased competitiveness during exam preparation—measured either on average through a

double-difference analysis within programs, through an event-study design before and after tracking,

or at the margin of admission to the top track using a regression discontinuity design—exacerbates the

gender gap in admissions to the most selective elite STEM graduate schools. These insights deepen our

understanding of gender disparities in access to selective STEM higher education and shed light on the

persistent gender pay gap observed at the top of the income distribution.
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1 Introduction

Admission to elite higher education institutions often relies on competitive entrance examinations (OECD,

2019), which are presumed to objectively measure students’ abilities. Recent literature has focused on ex-

planations for the lack of socio-economic diversity in elite higher education programs (Bonneau et al.,

2021; Chetty et al., 2023). However, emerging evidence highlights a gender gap in examinations, with

women frequently underperforming in high-stakes and competitive environments (Azmat et al., 2016;

Arenas and Calsamiglia, 2022). This could be an explanation for the lack of gender diversity in elite

Science, Technology, Engineering, and Mathematics (STEM) institutions. Nevertheless, the mechanisms

driving these gender gaps in high-stakes examinations remain largely unexplored.

In this paper, we document that women are significantly underrepresented in elite higher education

STEM programs in France compared to their representation in less selective STEM programs, and we

investigate the underlying causes of this disparity. Using detailed administrative admissions and school-

record data, we decompose the gender gap in admissions to elite STEM programs into application be-

havior, exam preparation performance, and performance on high-stakes entrance exams. We are able to

open the black box of the role of exam preparation in explaining gender disparities in high-stakes ex-

aminations. The impact of the learning environment during preparation for high-stakes entrance exams

has remained unexplored due to the challenges posed by limited variation in these environments and

the scarcity of detailed performance data on students during their exam preparation. Our study lever-

ages a unique setting within France’s elite STEM higher education system, characterized by differences

in learning environments driven by ability-based student tracking. We also conducted a large-scale data

collection effort of school records to capture within-program performance metrics.

Our findings extend the existing literature on gender disparities in high-stakes exams in two dimen-

sions. First, we show that these gaps persist even among highly selected, high-achieving students who

are genuinely well-prepared for these examinations. Additionally, we offer novel causal evidence that the

context of exam preparation significantly influences the observed gender performance gap.
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Our study takes advantage of the specific context of elite STEM higher education programs in France.

Admission to French elite STEM graduate schools (Grandes Écoles scientifiques) requires high school grad-

uates to enroll in highly selective undergraduate STEM preparatory (prep) programs (Classes Prépara-

toires aux Grandes Écoles).2 These intensive two- to three-year programs prepare students for competi-

tive national entrance examinations into elite graduate schools. We use a unique feature of these prep

programs—ability tracking during the second year, where star classes (classes étoiles) consist of the top-

performing students within a prep program—to explore how different learning environments affect fe-

male and male students’ performance differently.

To observe gender gaps throughout the admission pipeline to elite STEM graduate schools, we con-

struct a comprehensive administrative dataset spanning national secondary education examinations3 to

admission outcomes for STEM graduate schools, including entrance exam applications, exam perfor-

mance, and student preferences.4 To open the black box of students’ performance within prep programs,

we conducted a large-scale data collection of administrative school records, capturing grades for 21,801

students across 18 prep programs.5 This within-program data is crucial for tracking the evolution of

gender performance gaps over time and controlling for ability prior to high-stakes entrance exams.

With this extensive dataset, we first observe a puzzling fact: while female students self-select more

into STEM prep programs in terms of academic achievement,6 they end up underrepresented in the most

selective STEM graduate schools. The under-representation of women in the most selective STEM pro-

grams may arise from (i) differences in preferences, (ii) a gender performance gap during high-stakes

entrance examinations, and/or (iii) a gender performance gap in exam preparation. Our detailed data

analysis allows us to decompose the contribution of each of these factors. The results of this decomposi-

tion discount preferences as the primary cause and reveal that the gender gap in access to top programs is

partly due to performance disparities on exam day (D-Day exam effect) but is primarily driven by a widen-

ing gender gap in performance during exam preparation. This finding leads us to further explore the role

of the learning environment during exam preparation.

To analyze the gender differential impact of the learning environment for exam preparation, we com-

pare gender performance gaps across classes with varying levels of selectivity, as determined by the

tracking system. Our approach comprises two main analyses: (1) an average comparison of gender per-

2Only 2.5% of a birth cohort follows this path, and in 2021, 55% of prep program students graduated high school with highest
honors, compared to 9% of all students in France (DEPP, 2022).

3Administrative data from Direction de l’évaluation, de la prospective et de la performance (DEPP, OCEAN databases).
4The admission process to elite STEM graduate schools is centralized and organized by the Service des concours écoles

d’ingénieurs (SCEI), covering 165,450 applicants from 2015 to 2023.
5When restricted to a balanced sample of students that can be matched with admission data, the sample size decreases to

approximately 6,782 students.
6In our sample of STEM prep program students, 59 % of female students achieved their high school graduation exam with

the highest honors, compared to 47 % of male students.
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formance gaps by gender and class type, while accounting for detailed controls such as prior academic

achievement and fixed effects of prep programs, and (2) a regression discontinuity analysis at the mar-

gin of admission to the top track, star classes. Crucial for our identification, we check and confirm that

admission to the top track is the same for men and women. These two strategies are complementary:

the double-difference approach yields results closer to the average treatment effect of the star class and

can be applied to our full sample of students (N = 89,079), whereas the regression discontinuity analysis

provides an estimate closer to the local average treatment effect at the margin of star class admission and

is feasible only for students with available school record data (N = 6,782).

Our two strategies yield similar results. The double difference indicates that preparing exams in a

more selective and competitive environment is significantly less advantageous for female students than

for male students, contributing to the under-representation of women in the most prestigious STEM grad-

uate schools and subsequently to the gender pay gap among alumni of these institutions. On average, the

gender gap in the probability of gaining admission to the top 10% most selective STEM graduate schools

is 3.3 percentage points larger in star classes than in standard classes, representing a gender gap in admis-

sion that is more than twice as large.7 This finding holds at the margin of star class admission through a

regression discontinuity analysis on the subsample of students for whom we have within-prep program

grades. We show that admission to a star class significantly enhances the performance of male students

but has no impact on the performance of female students.

We perform several robustness checks to validate our results. The results are consistent across various

definitions of school selectivity, whether based on the prior academic achievements of admitted students

or applicants’ revealed preferences (Avery et al., 2013). Consistent with a differential causal effect of a

more demanding learning environment on male and female students, rather than differential selection

of genders into this environment, we observe in an event-study design that men and women who later

enroll in star classes initially exhibit no differential probability of being among the highest achievers in

their class prior to entering star classes. However, a gap in this probability emerges as soon as they enter

the star classes.

Our paper builds on the literature on the success of female students who decide to pursue STEM

studies. A substantial body of literature, synthesized in Kahn and Ginther (2018), aims at explaining

the under-representation of women in STEM fields. However, less attention has been given to women

who choose to pursue STEM studies and careers. Some studies examine factors influencing female per-

sistence within STEM programs (Griffith, 2010; Canaan and Mouganie, 2023), showing that women are

more likely to leave STEM (Ellis et al., 2016; Landaud and Maurin, 2020; Kugler et al., 2021) and are less

7Regarding expected earnings one year post-graduation, the gender pay gap is between 50% and 80% – depending on the
inclusion of bonuses – larger for star class alumni compared to standard class alumni. These figures are computed using aggre-
gated earnings data at the program × cohort × gender.
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likely to stay in STEM occupations after graduation (Beede et al., 2011; Delaney and Devereux, 2022). Our

article extends this literature by investigating women’s under-representation in the most selective STEM

programs, rather than average ones. This is crucial for several reasons. First, this under-representation

likely contributes to the substantial gender pay gap observed at the top of the income distribution and

among STEM professionals.8 Secondly, low female representation in these top programs suggests poten-

tial for increasing participation. Lastly, while the general under-representation of women in STEM may

be attributed to differences in preferences, the specific under-representation in top-tier programs might

not solely be preference-driven. The highly detailed nature of our administrative data, including rarely

available student preferences, allows us to examine the role of these preferences in detail.

Our article more directly contributes to the literature on gender differences in competitive and high-

stakes environments. Over the past two decades, studies have highlighted women’s under-performance

in such settings (Gneezy et al., 2003; Croson and Gneezy, 2009; Gneezy et al., 2009; Niederle and Vester-

lund, 2007, 2011), with recent work emphasizing larger gender gaps among young people (Flory et al.,

2018) and highly competitive individuals (Saccardo et al., 2018). Most of these studies rely on laboratory

experiments, but Buser et al. (2014) show that lab measures of competitiveness correlate with real-life

educational choices, underscoring the need for real-world research. Recent studies have explored gen-

der performance differences in real-life settings using variations in exam stakes, competitiveness, and

selectivity (Azmat et al., 2016; Montolio and Taberner, 2021; Landaud et al., 2020; Montalbán and Sevilla,

2023; De Sousa and Hollard, 2023). While much of this research focuses on primary and secondary edu-

cation, some studies also highlight female under-performance in college entrance exams and high-stakes

settings (Jurajda and Münich, 2011; Ors et al., 2013; Pekkarinen, 2015; Cai et al., 2019; Schlosser et al.,

2019; Parodi et al., 2022; Arenas and Calsamiglia, 2022). Our study complements this literature in two

ways. First, by focusing on a highly selected population of high-achieving students who have chosen

selective STEM studies, we show that even among this group—genuinely well-prepared for high-stakes

exams—gender gaps in exam performance persist. Second, we are able to open the black box of exam

preparation thanks to the varying learning environments within the same program and the availability of

rare within-program student performance metrics that we collected from school records.

Lastly, our research engages with the existing literature on tracking in education, reviewed in Betts

(2011). This literature has shown that students in the higher track benefit from interaction with higher-

performing peers (Card and Giuliano, 2016), but that low-performing students can also benefit from teach-

ers who target their level (Duflo et al., 2011). Closely related to us, Landaud and Maurin (2022) shows that

in the context of French preparatory programs, tracking can increase social gaps in access to elite schools.

8In our sample, we observe a gender pay gap ofe 1,470 among STEM workers one year post-graduation. Adjusting for STEM
program selectivity, the gap narrows to e 670, indicating that more than half of the gender pay disparity is due to unequal access
to selective STEM programs. These figures are computed using aggregated earnings data at the program × cohort × gender.
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We complement this literature by studying the gender-heterogeneous effect of tracking.

The article proceeds as follows: Section 2 details the institutional context of the French higher edu-

cation system, with a focus on undergraduate STEM preparatory programs. Section 3 outlines the data,

analysis samples, and descriptive statistics. Section 4 presents a decomposition of the gender gap in

admission to the best STEM graduate schools into several explaining factors. In Section 5, we examine

the role of the selectivity and competitiveness of the learning environment on these gender disparities.

Section 6 explores the role of peers. Section 7 concludes.

2 Institutional Background

French Higher Education System. The French higher education system is characterized by a significant

degree of academic hierarchy. Upon successfully completing the high school graduation exam, known

as the Baccalauréat, students who pursue higher education have three main tracks from which to choose:

(i) a technical and vocational track, which accounted for approximately 30 percent of first-year students

in the 2021-2022 academic year, (ii) a non-selective academic track represented by public universities,9

which enrolled around 50 percent of first-year students, and (iii) a selective academic track composed of

preparatory programs (Classes Préparatoires aux Grandes Écoles (CPGE)) and elite graduate schools (Grandes

Écoles), which admitted 7 percent of first-year students. The coexistence of these two academic tracks is a

distinctive feature of the French higher education system. The remaining 13 percent of first-year students

are enrolled in other specialized programs, such as paramedical training or specialized schools. Diagram

A1 displays a simplified version of the different tracks available to students in France. The STEM elite

academic track, which is the focus of our paper, is highlighted in blue.

Preparatory Programs and Elite Graduate Schools. Given their limited number of available seats, ac-

cess to preparatory (prep) programs is highly selective. Admission is largely based on academic perfor-

mance, as assessed by grades and teachers’ assessments from the students’ junior and senior years of high

school. Prep programs consistently attract the highest-achieving students. For instance, in the academic

year 2016-2017, 43 percent of the students enrolled in prep programs passed the high school graduation

exam with highest honors. In comparison, only 3 percent of students in the technical and vocational track

and 8 percent of university students achieved this level of academic distinction (Bonneau et al., 2021).

Prep programs are highly intensive academic courses that span two to three years, meticulously de-

9Until 2018, public universities were non-selective, and access was formally granted to anyone holding the high school grad-
uation exam. In the case of oversubscribed universities and programs, random lotteries were drawn to select students. Since
2018, universities have been allowed to select their students based on their own criteria. However, most university programs
remain undersubscribed and, therefore, not selective in practice: Bechichi et al. (2021) estimated that in 2018 and 2019, 84% of
university programs are non-selective, in the sense that they refuse less than 5 percent of applicants.
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signed to prepare students for the competitive national entrance examinations required for admission to

elite graduate schools. These higher education programs are predominantly hosted by renowned high

schools for their academic excellence. The academic requirements of prep programs are notably demand-

ing. For a two-year program, the national curriculum is closely aligned with the content that would be

covered in a bachelor’s degree in several subject: mathematics, physics, chemistry, engineering, and/or

computer science. Students enrolled in these prep programs engage weekly in four to six hours of writ-

ten mock exams, often scheduled on Saturdays, on top of two oral assessments per week. Students are

also subjected to frequent peer-based ranking with their classmates based on these written and oral mock

exams.

The elite graduate schools play a pivotal role in shaping the country’s elite in France. Historically,

these renowned institutions were established following the French Revolution with the explicit aim of

training a cadre of individuals to serve in leadership positions across various sectors, including politics,

business, science, the military, and academia. The selection criteria for admission to these institutions

have predominantly been meritocratic, in contrast to the aristocratic selection practices of the past. In more

recent cohorts, approximately 6 percent of a birth cohort graduates from one of these elite schools, with

3 percent graduating from a STEM-focused institution. Notably, a hierarchical structure prevails among

these elite graduate schools, with some being exceptionally selective, while others maintain a less rigorous

admission process.10

STEM Preparatory Programs and Star Classes. This study focuses on Science, Technology, Engineering,

and Mathematics (STEM) preparatory programs, which admit approximately 25,000 students annually.

This represents about 2.5 percent of a given birth cohort, and roughly two-thirds of the total enrollment in

preparatory programs. These STEM prep programs encompass five major tracks (see Diagram A3), each

emphasizing distinct disciplines : biology, engineering science, mathematics, physics-chemistry, and/or

computer science. In all the tracks but the biology one, students face a tracking system during their

second-year classes, between more selective classes which are referred to as “star” classes (classe étoile),

or standard classes (as displayed in Diagram A1). Although the core curriculum is theoretically consis-

tent between star and standard classes, students in star classes often engage more deeply with academic

content beyond the official curriculum and receive enhanced preparation for the most competitive en-

trance examinations. Their weekly written assessments are structured to mirror the format of the most

selective entrance exams. Due to frequent peer-based rankings, star classes foster a more competitive and

intellectually stimulating environment. Star classes typically have fewer students and are taught by more

10The average percentile rank in the high school graduation exam for students admitted to the top 10% of the most selective
elite graduate schools is 91, while it is 38 for those admitted to the bottom 10% of less selective schools (Bonneau et al., 2021).

7



experienced teachers compared to standard classes. Not all preparatory programs offer tracking between

star and standard classes in the second year; this feature is more commonly found in the bigger and most

prestigious preparatory programs. We exclude the biology track from our analyses because it does not

have this tracking system during the second year.

Competitive Entrance Examinations. At the end of their second year in prep programs, students take

competitive entrance examinations for admission to elite graduate schools, of which there are more than

200. To manage the volume of exams and prevent scheduling conflicts, several schools have collabo-

rated to share the same entrance examinations, forming five large groups of competitive entrance exams.

Candidates can then choose a selection of entrance exams that align with their preferences and objectives.

The admission process to elite STEM graduate schools is centralized and overseen by the Service de

Concours Ecoles d’Ingénieurs (SCEI), based on the college-proposing Gale-Shapley Deferred Acceptance

mechanism (Gale and Shapley, 1962), with no limits on the number of programs students can rank in

their list of STEM graduate schools.

The admission timeline is detailed in Figure 1. Initially, between December and January, students

select which competitive exams to take. The written part of the exams are conducted in April and May

and typically include two mathematics tests, two physics tests, a foreign language test, a literature test,

and, depending on the track11 and optional subjects chosen, additional exams in chemistry, engineering

sciences, and/or computer science.

Candidates achieving satisfactory results in the written portion are then eligible for oral exams held in

June and July. Following these, they must submit their rankings of preferred schools to the clearinghouse

by the end of July, with initial offers from the centralized admission process being made shortly thereafter.

There are five rounds of offer and acceptance in the admission process, spanning from the end of July to

the beginning of September, due to approximately 20 percent of students repeating the second year of

the prep program to improve their entrance exam results, thereby exiting the admission procedure and

freeing up their spots for others.

3 Data

3.1 Data Sources

We exploit four distinct data sources to carry out our analyses.
11There are four main tracks, with slightly differing specialties (more math-intensive, physics-intensive, engineering science-

intensive). The organization of these tracks is displayed in Diagram A3.
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Figure 1: Schedule of Prep Program and Competitive Entrance Exams

Year 1

Year 2

September

September

January June

June

May July AugustApril

students are allocated to
star and standard classes

students decide
which exams to take

written part oral part
of examsof exams

deadline
for ROL

results of
admission

Notes: This diagram shows the preparatory programs calendar and STEM graduate schools admission timeline over the two years of prep
programs. Some students repeat the second year to try to get into a better STEM graduate school. ROL stands for rank-ordered list of schools
submitted by students.

Administrative data from the centralized admission process to STEM graduate schools (SCEI). We

use novel administrative data from the Service de Concours Écoles d’Ingénieur (SCEI) from 2015 to 2023. The

data contains students’ demographic information (age, gender, social background, geographical origin,

need-based scholarship status, disability status), students’ academic information (prep program where

the student is registered, track, star or standard class, number of time taking the competitive exam), the

list of competitive exams that each applicant decided to take — which allows us to recover the set of

graduate schools to which they have applied, their results at the competitive exams, each student rank-

ordered list (ROL) of schools, and admission offers for each round of the admission process.

Administrative data from the Ministry of Education (DEPP, 2010-2020). In order to gain detailed in-

formation on prior academic achievement before entering the prep programs, we match through an en-

crypted identifier the SCEI data with the administrative data from the Direction de l’évaluation, de la prospec-

tive et de la performance (DEPP), which is in charge of statistics for the Ministry of Education in France. We

control for previous academic achievement through high school graduation exam (Baccalauréat) and mid-

dle school graduation exam (DNB) results (both GPA and detailed subject grades).

Data collected in 18 STEM prep programs. Between February 2022 and July 2022, and February and

April 2023, we collected data in 18 STEM prep programs who accepted to take part in our study. Fig-

ure A2(a) displays the location of prep programs surveyed. We gathered information about the universe

of their recent previous cohorts students and current students, depending on the prep programs’ records

keeping. We collected students’ demographics (gender, date of birth) and academic information (track,

class, grades in each subject, admission outcome). We statistically matched this surveyed data to our

administrative data on the centralized admission process (SCEI dataset).12 We thus have detailed infor-

12One prep program opposed this statistical matching. They are thus not matched, but are included in the analyses which
only use surveyed prep programs data.
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mation on grades during the prep programs for around 17% of our study sample. Given that the tracking

system between standard and star classes is implemented between the first and second years of the prep

program, this data allows us to conduct a regression discontinuity design at the margin of star class ad-

mission. More generally, this data enables us to open the black box of within-program performance,

which is often an overlooked aspect of the literature on the gender gap in STEM programs.

Aggregated earnings data (CTI). We web-scrapped data on the median earnings of alumni from STEM

elite graduate schools, by school, graduation cohort, and gender. This information was sourced from the

website of the Commission des Titres d’Ingénieurs (CTI), for individuals who graduated between 2015 and

2023. The CTI provides, for each STEM graduate school, data on the median earnings of alumni from the

previous cohort.13

3.2 Samples of Analyses

We restrict our sample to STEM prep programs in France14 because we have more information about

their students, especially about their middle and high school graduation exam results. We also restrict

our sample to the combinations of prep programs and tracks that are present throughout the nine-year

period covered by our data and have more than 10 students enrolled per year. We exclude the biology

track for two reasons: (i) we want to concentrate on programs in which female students are in minority;

and (ii) unlike the other tracks, the biology one does not have a tracking system between star and standard

classes in its second year, which is the main feature used in our analysis.

We use different samples in our analyses: the full sample of applicants (N=165,450), a restricted study

sample — which includes only applicants from prep programs and tracks that have both a standard class

and a star class in the second year (N=89,079),15 and a survey sample, consisting of data collected from

prep programs in 2022 and 2023 about their students’ grades, which we matched with our administrative

data (N=14,746), including those used for the regression discontinuity analysis (N=6,782). The intersec-

tion of these different samples is detailed in Figure B4.

3.3 Descriptive Statistics

The descriptive statistics of our sample are displayed in Table 1. We have the information of the students

for nine years of entrance examinations, from 2015 to 2023. There are 200 STEM prep programs in main-

13In cases where data for a particular year at a school was unavailable, we made inferences based on information from adjacent
cohorts. For the most recent cohorts that have not yet graduated within our study sample, we estimated earnings by referencing
the previous cohorts and factoring in the average annual increase in earnings specific to that school. Overall, earnings data is
unavailable for 3.8% of individuals of our study sample.

14There are also some prep programs abroad included in the administrative data, mainly in Morocco.
15This data restriction is mainly because we aim to compare students in star and standard classes within the same programs.
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land France, with more than a quarter of them located in the Parisian area. In Column (4), we compare

these descriptive statistics with those of all freshmen and sophomores enrolled in higher education in

France during the academic year 2016-2017, with figures sourced from Bonneau et al. (2021).16

Female students, while representing 54% of all students enrolled in the first two years of higher ed-

ucation in France, account for only a quarter of all prep program students. The student population of

prep programs is predominantly composed of high-achieving individuals with high socioeconomic status

(SES). Only 28% of them are need-based scholarship holders (a proxy for low-income students), compared

to 38% of all students in France. Furthermore, 62% of prep program students have a father, and 48% have

a mother, coming from a high socio-economic status, in stark contrast to 32% (resp. 21%) of all students.17

Additionally, 50% of them passed the high school graduation exam with the highest honors, while this

achievement was attained by only 10% of all freshmen and sophomores. The proportion of prep program

students coming from Paris is twice as large as that of all students coming from Paris (8% versus 4%).

Regarding enrollment, 18% of prep program students are enrolled in a program in Paris, compared to

10% of all students. 36% of all prep program students are enrolled in star classes.

When we divide our sample between students in star and standard classes, we observe that star classes

have fewer female students, and a greater proportion of high SES and high-ability students. Only 40

percent of preparatory programs (82 out of 200) implement this tracking system in the second year, even

though these programs accommodate 54 percent of all students (Table B3). Moreover, these programs

have a higher concentration in Paris compared to the overall distribution of preparatory programs.

Table B2 in the Appendix presents the descriptive statistics for male and female students separately.

Overall, male and female students exhibit relatively similar observable characteristics with two notable

exceptions: women tend to have higher prior academic achievement (59% of them obtained the high

school graduation exam with highest honors compared to 47% of men) and are less likely to repeat in the

prep program (16% versus 20%).

Table B3 in the Appendix compares the students across our three study samples. The three samples

exhibit relatively similar demographic characteristics. However, the study sample, which exclusively

comprises programs and tracks with both star and standard classes, includes a higher proportion of stu-

dents from high socioeconomic status (SES) backgrounds and high achievers. In our surveyed sample,

there is a slight overrepresentation of programs from the Parisian area and more recent years, due to the

schools’ record-keeping practices. Apart from these distinctions, the surveyed sample is quite represen-

tative of the study sample in terms of demographic characteristics.
16We do not possess exhaustive information on all freshmen and sophomores for the exact same cohort as our prep program

students (2015-2023), but the 2016-2017 academic year is likely representative of these cohorts.
17For socio-economic status, we rely on the Department of Education’s statistical service (DEPP), which classifies occupations

into four groups by socio-economic status (SES): high SES includes white-collar professionals, managers, CEOs, teachers, and
artists.
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Table 1: Descriptive Statistics (2015-2023)

Prep. program students All students
(2015-2023) (2016-2017)

All Star classes Standard classes
(1) (2) (3) (4)

A. Students
Female 0.25 0.23 0.26 0.54

Age 19.6 19.5 19.6 19.2
(0.8) (0.8) (0.8) (1.4)

Need-based scholarship holder 0.28 0.23 0.31 0.38
Father is high SES 0.62 0.71 0.58 0.32
Mother is high SES 0.48 0.56 0.44 0.21

High School Graduation Exam
Highest honors 0.50 0.69 0.40 0.10
High honors 0.32 0.24 0.37 0.18
Honors 0.14 0.06 0.19 0.31
Without Honors 0.03 0.01 0.05 0.42

Percentile rank 0.78 0.86 0.74 0.51
(0.18) (0.14) (0.19) (0.29)

Percentile rank re-weighted (exams. coeffs.) 0.87 0.93 0.84 –
(0.16) (0.10) (0.17)

From Paris (in high school) 0.08 0.12 0.06 0.04
From Parisian area - outside Paris (in high school) 0.18 0.19 0.17 0.15
Enrolled in Paris 0.18 0.26 0.14 0.10
Enrolled in Parisian area - outside Paris 0.13 0.13 0.13 0.11

Star class 0.36 1.00 0.00 –
Repeater in prep program 0.19 0.19 0.19 –

B. Prep Programs
Number of prep programs 200 82 197 –

in Paris 23 15 22 –
in Parisian area (outside Paris) 31 12 29 –

Number of classes 546 185 361 –

Number of students 165,450 58,775 106,675 1,090,356

Notes: This table displays the descriptive statistics for all the students in our sample, and then divide our sample between students in star classes
and students in standard classes. The sample is constructed from the SCEI administrative datasets, which cover the entire universe of applicants
to elite STEM graduate schools from 2015 to 2023, excluding the biology track. Only applicants enrolled in prep programs located in France are
included. We retain only those prep programs that were present throughout the nine-year period covered by our data and had more than 10
students per year. Age is the age of the candidates when taking the competitive entrance exam. SES is defined using the classification of the
Ministry of National Education. In Column (4), we compare these descriptive statistics with those of all freshmen and sophomores enrolled in
higher education in France in the academic year 2016-2017, with figures sourced from Bonneau et al. (2021). Table B2 in the Appendix presents
these descriptive statistics for male and female students separately. Table B3 compares the students in our three samples: all applicants, our
restricted study sample — which includes only applicants from prep programs with both a standard class and a star class —, and the sample of
prep programs that we surveyed in 2022 and 2023 to collect students’ grade data during the prep programs.

12



3.4 Outcome Variables

Our primary outcome is the graduate school where applicants receive a final offer in the centralized

admission process, regardless of whether the student ultimately accepts the offer. In our analysis, we

focus on admission to the most selective graduate schools and we use two distinct definitions of school

selectivity.

Selectivity. The first measure assesses a more objective selectivity. It relies on the average percentile rank

of admitted students at their high school graduation exams. In the the rest of the paper, this definition

will be referred to as selectivity.

Desirability. The second definition of selectivity is grounded in students’ revealed preferences and as-

sesses a more subjective selectivity. Following Avery et al. (2013), we estimate the following rank-order

logit model:

Ui,j = θj + εi,j (1)

where Ui,j is the rank of school j for student i in its rank-ordered list of schools and θj is school j fixed-

effect. We use the estimates θ̂j (standardized to have mean zero and a standard deviation of one) as a

proxy for program desirability. Schools that are more desirable receive a higher volume of applications

and are more frequently ranked higher on students’ rank-ordered lists, indicating their heightened desir-

ability.18 We also perform a robustness check by defining desirability based on the revealed preferences

of female students exclusively. We thus compute distinct school fixed effects for female ( ˆθjF ) and male

students ( ˆθjM ). This allows us to observe which school characteristics are valued by both genders and to

ascertain the role of differences in preferences between male and female students in the underrepresen-

tation of females in the most selective graduate schools. In the rest of the paper, these definitions will be

referred to as desirability and desirability for female students.

Top 10% of STEM graduate schools. Regardless of the specific definition of selectivity, we focus on

the top 10 percent of schools, identified as the top-tier STEM graduate schools. The primary variable of

interest in our analysis is a binary variable, taking the value 1 if a student receives an offer from a STEM

graduate school in the top 10% of most selective schools, and 0 otherwise. Selectivity is determined

separately for each of the four tracks considered in our study, as not all tracks lead to the exact same

18These methodologies have been criticized, partly because even in strategy-proof mechanisms, students may misreport their
true preferences (Fack et al., 2019). In our context, misreporting is less likely than in most settings, since there is no limit to the
number of schools students can include in their rank-ordered list of preferred graduate schools. Nonetheless, we observe some
evidence of “skipping the impossible” strategies. Therefore, we are currently attempting to redefine school desirability using
the methodology proposed in Fack et al. (2019), estimating preferences through a conditional logit model on feasible graduate
schools.
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set of graduate schools. Our rankings of graduate school selectivity closely align with popular online

rankings accessible to students, such as those found on the L’Étudiant website.19 The various definitions

of selectivity exhibit a substantial degree of concordance (for a comprehensive list of the top 10 percent

most selective schools under each definition and for each track, please refer to Table B4 in the Appendix).

Motivation of the variables of interest. Securing admission to a top-tier elite STEM graduate school

carries profound significance, often leading to significantly enhanced labor market outcomes. Using ag-

gregate data at the school, graduation cohort, and gender level, we identify a pronounced earnings ad-

vantage for graduates of more selective schools just one year after graduation. Notably, the earnings gap

between alumni from schools in the 9th and 10th selectivity deciles is particularly striking, with an annual

difference of approximately e3,300 (for more detailed information, refer to Table B5 in the Appendix). In

our sample of engineering graduates, the raw gender pay gap stands at e1,470, while the adjusted gap,

accounting for STEM school fixed effects, narrows to e670 — less than half of the initial disparity. This

suggests that the substantial underrepresentation of women in the most selective schools plays a critical

role in contributing to the gender wage gap among STEM workers.

Moreover, elite STEM graduate schools significantly propel their alumni into leadership roles in major

corporations. As of October 2022, among the forty CEOs of CAC40 companies, twenty possess a science

background. Nineteen of these twenty CEOs were educated at the top 10 % most selective STEM graduate

schools.

Finally, another method for evaluating the selectivity of these top schools is their acceptance rate, de-

fined as the percentage of applicants admitted to the school — those ranked above the school’s admission

threshold — relative to the total number of individuals who took the entrance exam. Figure B7 in the

Appendix shows that the most selective graduate schools have the lowest admission rates (12%). This

admission rate is comparable to that of the most selective U.S. universities, like Ivy League schools (5.2%

in 2022), particularly given the high level of selectivity within the candidate pool, which represents only

2.5% of the highest-performing students in a birth cohort.

4 Stylized Facts

Figure 2 displays the proportion of women by decile of selectivity of STEM graduate schools. This pro-

portion decreases as the selectivity of the STEM graduate schools increases, reaching its lowest in the top

10 percent most selective graduate schools. In this section, we provide a descriptive analysis to explain

this gender gap in access to the most prestigious STEM programs. This discrepancy could arise from (i) a

19L’Étudiant website: https://www.letudiant.fr/classements/classement-des-ecoles-d-ingenieurs.html, consulted on May 21,
2023.
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gender gap in achievement before prep programs; (ii) a gender gap in achievement during prep programs;

(iii) a gender gap in high-stakes exam performance; or (iv) gender differences in preferences. We aim to

quantify the contribution of each of these factors through a decomposition. We can study this thoroughly

thanks to our unique dataset, which covers the entire process of elite STEM graduate school recruitment,

enriching the burgeoning literature on gender disparities across selection stages (Farré and Ortega, 2023).

Figure 2: Proportion of Female Students, by Decile of Selectivity of STEM Graduate Schools
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Notes: This figure shows the proportion of female students in STEM graduate schools, by decile of selectivity of STEM graduate schools. The
average number of female students in these schools is represented with the red line. Selectivity of schools is measured using the average
percentile rank of admitted students at the high school graduation exam over the period 2015-2023. Figure B8 in the Appendix presents the
same statistics using an alternative measure of school selectivity, based on students’ preferences (Avery et al., 2013). Figure B9 in the Appendix
presents the same statistics for each of the specific tracks (i.e., differing specialties) in prep programs. It shows that the underrepresentation of
women in the most selective STEM graduate schools is present across all five tracks.

For this analysis, we mostly rely on the smaller subsample of programs for which we have grades

within the prep program, as we want to observe performance throughout the preparation for high-stakes

entrance exams. Table 2 and Figure 4 present the main results of the decomposition. Overall, we observe

the evolution of the raw gender gap in the probability of reaching the top 10 percent most selective gradu-

ate schools when adding various controls for academic achievement and students’ preferences. This raw

gender gap, is equal to 6.2 percentage points (Table 2, column 1).20

20To compute the initial gender gap, we control for demographic characteristics, which are relatively balanced by gender (see
Table B2), as well as for program, track, and year fixed effects, which are less balanced. Our focus is on the decisions students
make after choosing to attend a STEM prep program and selecting which program to attend. The raw gender gap is 8 percentage
points (Figure 4), indicating that differences in observable characteristics and program and track choices already account for
about 20 percent of the raw gender gap.
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Performance before prep program. Women entering prep programs typically perform better on the

national high school graduation exam (Figure 3).21 This holds true both when using high school gradua-

tion exam GPA (Figure 3(a)) and when reweighting the GPA with coefficients from the most competitive

entrance exams (see Table A1 for coefficients used for this reweighting), which puts much more empha-

sis on STEM subjects (Figure 3(b)), although the differences are less pronounced with this reweighting.

Therefore, it is not surprising that previous academic achievement does not help explain the gender gap

in access to the most selective programs. Based on prior academic achievement alone, we would expect

women to enter the more selective programs more frequently than their male counterparts. Controlling

for previous academic achievement through detailed grades in each subject obtained at the national high

school exam actually increases the gender gap by approximately 20 percent (Table 2, column 2).

Figure 3: Percentile Rank at the High School Graduation Exam of STEM Prep Program Students, by
Gender
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Notes: These histograms illustrate the distribution of percentile ranks of prep program students on the high school graduation exam, by gender.
Percentiles are computed among all high school students. In Figure (a), the percentile ranks are derived from the average GPA achieved on the
high school graduation exam. In Figure (b), scores are re-weighted with the coefficients of the most selective competitive exams. The coefficients
used for this re-weighting can be found in Table A1.

Performance during prep program. Subsequent columns in Table 2 control for achievement during the

prep program (both decile of average GPA and quintile in each subject) at the beginning of the prep pro-

gram (1st year, 1st semester) and by the end, just before taking the high-stakes entrance exams (2nd year,

2nd semester). Overall, the gender gap forming and increasing in the prep program appears to be a major

explanatory factor for the gender gap observed in access to the most selective graduate programs. 52

percent (44 percent when considering only positive factors summing to 100) is explained by performance

by the end of the first semester in the prep program. 35 percent (30 percent when considering only posi-

21This finding is consistent with Bechichi and Bluntz (2019), who show that female students self-select more when applying to
STEM prep programs.
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tive factors summing to 100) is explained by the increasing gender gap in performance between the first

semester and the last semester in the prep programs.22

Figure B10 in the Appendix details the evolution of the gender gap in performance (defined as the

probability of being in the top of the class) over time in the prep program for each semester. The figure

reveals a slightly U-shaped pattern in the gender performance gap.23

The prep program period sees a reversal and widening of the gender gap in performance. These

dynamics explain around three-quarters of the gender gap in access to the most selective STEM graduate

schools.

Choice of competitive exams. Overall, differences in the choice of competitive exams to take24 explain

8 percent (7 percent when considering only positive factors summing to 100 percent) of the gender gap in

access to the top graduate schools (Table 2, Column 5). This suggests that even at the same performance

level by the end of the prep programs, male and female students do not opt equally for the most selective

exams. This result aligns with previous literature indicating that women tend to shy away from competi-

tive environments (Niederle and Vesterlund, 2007). It’s worth noting, though, that the effect of this factor

is relatively small compared to the other factors considered here.

Performance on the day of the high-stakes exams. Column 6 of Table 2 indicates that the gender gap

in performance on the day of the high-stakes exams explains 23 percent (20 percent when considering

only positive factors summing to 100 percent) of the gender gap in access to the top 10 percent most se-

lective STEM graduate schools.25 This corresponds to the D-Day Effect of the exams: for a similar level

of achievement by the end of the prep program, women slightly underperform at the most selective

high-stakes exams, partly explaining their underrepresentation in the most selective STEM elite graduate

schools. These results confirm previous findings from the literature (Azmat et al., 2016; Arenas and Cal-

samiglia, 2022) on a very selective student population of high achievers who have opted for STEM studies

and a competitive selection process. This is striking because these students are supposed to be very well

prepared for such high-stakes exams, taking written and oral mock exams that mirror the exact format of

the high-stakes entrance exams every week.

22For these last controls, we also include star fixed effects since decile of GPA and quintile of grades are defined at the class
level and thus not comparable for students enrolled in the top track (star classes) or non-top track (standard track).

23It is crucial to acknowledge that third-year students repeating the prep program represent a self-selected subgroup, given
that only 20 percent of students opt to repeat their second year to enhance their admission prospects, with 21 percent of men and
only 16 percent of women making this choice.

24Applications to top graduate schools are controlled by dummies for application to each of the exams leading to top graduate
schools, defined track by track.

25Performance during competitive entrance exams is controlled for by (i) dummies for whether or not the applicant is ranked
at competitive exams leading to top graduate schools and (ii) the percentile rank of their rank in those exams, controlled linearly
for each entrance exam.
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Figure 4: Decomposition of the Gender Gap in Access to Top 10% Most Selective Graduate Schools

Notes: This graph displays the decomposition of the gender gap in access to the top 10% most selective graduate schools. We use the subsample
of students for whom we have collected grades during the prep program to be able to control precisely for those grades. The decomposition
is computed by observing how much the gender gap in access to top STEM graduate schools is reduced when an additional control is added,
compared to the raw gender gap of 8 percentage points. Selectivity of schools is defined by the average percentile rank of admitted students
at the high school graduation exam. Demographic controls include geographic origin (Paris or the Parisian area), low-income status, the socio-
economic status of each parent (categorized into four groups), French nationality, repeater status, disability status, whether the student was in a
science academic track during high school, the student’s option (either engineering science or computer science), and the gender composition in
the track × program. We include year, track, and program fixed effects. Previous ability is controlled by (i) decile rank dummy variables from both
high school and middle school graduation exams’ GPAs, and (ii) quintile rank dummy variables for each grade at the high and middle school
graduation exams in the subjects studied in prep programs — mathematics, physics and chemistry, engineering science, French (both written and
oral), and foreign languages. Prep programs’ ability controls include (i) dummy variables for each decile of the weighted GPA, and (ii) dummy
variables for each quintile in grades for mathematics, physics, chemistry, engineering science, computer science, French, and foreign languages,
during the first semester (1st year, 1st semester) and last semester (2nd year, 2nd semester) in the prep program. For end-of-prep program
ability, we also control for star class status, as performance is defined within each class. Applications to top graduate schools are controlled by
dummies for application to each of the exams leading to top graduate schools, defined track by track. D-Day effect refers to performance during
competitive entrance exams and is controlled for by (i) dummies for whether or not the applicant is ranked at competitive exams leading to top
graduate schools and (ii) the percentile rank of their rank in those exams, controlled linearly for each entrance exam. Preferences are controlled
for by adding dummy variables for whether or not each of the top graduate schools is ranked among students’ ranked-ordered lists of schools.
The order of these variables is chosen to follow the chronological order of decisions made by students.
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Table 2: Decomposition Gender Gap in Access to Top 10% Most Selective Schools

Receive an offer from top 10% most selective graduate schools

(1) (2) (3) (4) (5) (6) (7)

Female student -0.062*** -0.075*** -0.043*** -0.021** -0.016* -0.002 -0.004
(0.009) (0.009) (0.009) (0.008) (0.008) (0.007) (0.007)

Decomposition -21% 52% 35% 8% 23% -3%
% explained by additionnal control

Controls:

Demographics and Fixed-effects X X X X X X X
Demographic characteristics
Program, track, and year FE

Previous ability X X X X X X
HS & MS grade FE

Beginning of prep program ability X X X X X
1st year - 1st semester grade FE

End of prep program ability X X X X
2nd year - 2nd semester grade FE
Star class

Applications X X X
Apply to top school exams

D-Day Effect X X
Percentile rank at top school exams

Preferences X
Top schools in ROLs

N 8,779 8,778 8,778 8,778 8,778 8,778 8,778
Adj-R2 0.358 0.416 0.516 0.577 0.590 0.724 0.730

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table shows the evolution of the gender gap in access to the top 10% most selective graduate schools when adding various controls.
We use the subsample of students for whom we have collected grades during the prep program to be able to control precisely for those grades.
Table B6 in the Appendix displays the same decomposition on the full sample of students, but without controls for prep program ability. The
decomposition raw is computed by observing how much the gender gap is reduced when an additional control is added, compared to the
raw gender gap observed in the first column. Selectivity of schools is defined by the average percentile rank of admitted students at the high
school graduation exam. Demographic controls include geographic origin (Paris or the Parisian area), low-income status, the socio-economic
status of each parent (categorized into four groups), French nationality, repeater status, disability status, whether the student was in a science
academic track during high school, the student’s option (either engineering science or computer science), and the gender composition in the
track × program. We include year, track, and program fixed effects. Previous ability is controlled by (i) decile rank dummy variables from both
high school and middle school graduation exams’ GPAs, and (ii) quintile rank dummy variables for each grade at the high and middle school
graduation exams in the subjects studied in prep programs — mathematics, physics and chemistry, engineering science, French (both written and
oral), and foreign languages. Prep programs’ ability controls include (i) dummy variables for each decile of the weighted GPA, and (ii) dummy
variables for each quintile in grades for mathematics, physics, chemistry, engineering science, computer science, French, and foreign languages,
during the first semester (1st year, 1st semester) and last semester (2nd year, 2nd semester) in the prep program. For end-of-prep program
ability, we also control for star class status, as performance is defined within each class. Applications to top graduate schools are controlled by
dummies for application to each of the exams leading to top graduate schools, defined track by track. Performance during competitive entrance
exams is controlled for by (i) dummies for whether or not the applicant is ranked at competitive exams leading to top graduate schools and (ii)
the percentile rank of their rank in those exams, controlled linearly for each entrance exam. Preferences are controlled for by adding dummy
variables for whether or not each of the top graduate schools is ranked among students’ ranked-ordered lists of schools. The order of these
variables is chosen to follow the chronological order of decisions made by students. Standard errors are clustered at the track × program × cohort
level.
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Differences in preferences. Differences in preferences are often cited to explain women’s underrepre-

sentation in STEM fields (Kahn and Ginther, 2018). To what extent is their underrepresentation in the

most selective STEM programs also attributable to gender differences in preferences over STEM grad-

uate schools? Column 7 of Table 2 reveals that the role of preferences is minimal, barely changing the

coefficient on the gender gap in access to the most selective STEM graduate schools.26 If anything, the

main differences in preferences are observed regarding the choice of which competitive exams to take,

as mentioned earlier, but not on whether to include top STEM graduate schools in their rank-ordered-

list of graduate schools. For individuals with the same performance in prep programs, the same set of

competitive exams, and the same results at those exams, preferences for top STEM schools are strictly

similar.

To corroborate these results, we leverage the very detailed data on students’ preferences (i) to observe

which characteristics of the graduate schools are valued by the students and (ii) to run counterfactual sim-

ulations of the school-student matching algorithm, estimating the preferences of female students based on

those of male students. These results are more precise as they rely on the full structure of students’ pref-

erences rather than a binary indicator of whether a graduate school is ranked in students’ rank-ordered

lists (ROLs) (Table 2, Column 7).

Overall, male and female students tend to value the same graduate school characteristics (Table 3).

We regress specific school characteristics and their interactions with gender against school fixed effects

from revealed preferences (Equation 1). Comparing school fixed effects from female ( ˆθjF ) and male ( ˆθjM )

preferences shows no significant differences. Both genders value top 10% most selective schools, over-

all selectivity, expected earnings, and military schools similarly. Some coefficients for female students

are slightly negative, indicating a lower valuation for these characteristics, but the differences are minor

and statistically insignificant. This consistency holds even when all characteristics are considered jointly

(Column 6, Table 3). These results are consistent with the fact that graduate schools in the top decile of

desirability for both men and women are very similar (Table B4).

26Preferences over graduate schools are controlled for by adding dummy variables for whether or not each of the top graduate
schools is ranked among students’ ranked-ordered lists of schools.
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Table 3: STEM Graduate School Characteristics Valued by Students, by Gender

(1) (2) (3) (4) (5) (6)

School FE School FE School FE School FE School FE School FE

Top Decile of Selectivity 2.07∗∗∗ 0.75∗∗∗

(0.076) (0.064)

Top Decile of Selectivity × Female -0.082 -0.023
students (0.11) (0.091)

Decile of Selectivity 0.32∗∗∗ 0.20∗∗∗

(0.011) (0.0081)

Decile of Selectivity × Female -0.020 -0.019
students (0.015) (0.011)

Expected Earnings 0.15∗∗∗ 0.065∗∗∗

(0.0073) (0.0048)

Expected Earnings × Female students -0.0033 0.00078
(0.010) (0.0068)

All Military School 1.59∗∗∗ 0.46∗∗∗

(0.18) (0.074)

All Military School × Female students 0.042 0.097
(0.25) (0.10)

Strictly Military School 0.45∗

(0.25)

Strictly Military School × Female -0.19
students (0.35)

Female students -0.041 0.078 0.077 -0.059 -0.049 0.041
(0.046) (0.11) (0.41) (0.062) (0.066) (0.26)

Track fixed effects X X X X X X

Analytical Weights (number of admitted students) X X X X X X

N 976 976 920 976 976 920
R2 0.605 0.647 0.499 0.170 0.031 0.869
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table presents the regression coefficients of various school characteristics — as well as their interactions with a gender dummy
variable — on school fixed effects computed separately for male and female students ( ˆθjF and ˆθjM ), allowing an analysis of the attributes
valued by students in general and female students in particular. The school fixed effects are calculated using a rank-ordered logit model based
on students’ ranked lists of preferred schools (Avery et al., 2013), and these effects also serve to quantify school desirability. In this analysis, we
incorporate weights equal to the number of students admitted to each school, to avoid placing too much weight on small schools. The school
fixed effects are normalized to have a mean of 0 and a standard deviation of 1, and are computed separately for each track. The regression thus
also includes track fixed effects.“Expected earnings" refers to the median gross annual salary, inclusive of bonuses, of the most recent alumni
cohort from each school, with data retrieved from the (CTI website). The category “Military schools" encompasses all such institutions (Ecole
de l’Air, Ecole Navale, ENSTA Bretagne, ENSTA Paris, ESM Saint-Cyr, Polytechnique), while “Strictly military schools" includes the same list minus
Polytechnique, a prestigious and multifaceted school that, despite its military affiliation, does not exclusively lead to military careers.

To gauge gender differences in preferences more precisely, we estimate male students’ preferences

using a rank-order logit model (Equation 1) and predict valuations for both genders. We then run 300

simulations of the matching algorithm using different error vectors (with εi,j being independent and iden-

tically distributed (i.i.d.) according to a Type I extreme value (Gumbel) distribution), observing the gender

distribution in the top 10% most selective schools.27 Results suggest that if women had the same prefer-

ences as men, their representation in the top 10% most selective graduate schools might actually slightly

27These methods face criticism as students may misreport preferences even in strategy-proof mechanisms (Fack et al., 2019).
Misreporting is less likely here since there is no limit to the number of schools in the rank-ordered list. However, some ’skipping
the impossible’ strategies are noted. We are refining preference estimations using methods proposed by Fack et al. (2019).
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decrease (Figure 5). This could be due to intensified competition for the same STEM graduate schools,

considering that women tend to underperform in high-stakes exams. Current minimal gender differences

in preferences might benefit women’s representation in top schools.

Taken together, these results suggest that women’s underrepresentation in the most selective STEM

graduate schools is not primarily due to differing preferences.

Figure 5: Access to the 10% Most Selective Graduate Schools When Estimating Student Preferences From
Male Ones
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Notes: These figures depict results from 300 counterfactual simulations of the school-student matching algorithm, using preferences of male
students to predict the preferences of all students. The red bars display the current proportion of male and female students accessing the top
10% most selective STEM graduate schools; the blue bars display this proportion under the counterfactual simulation scenario. Specifically, we
estimate a rank-ordered logit model based on schools ranked in the ROLs by male students and predict the school valuation for all students.
We then generate 300 different error vectors, each distributed according to a Type I extreme value (Gumbel) distribution, and re-run the school-
student matching algorithm 300 times. These results are preliminary since we are currently attempting to redefine the estimation of students’
preferences using the methodology proposed in Fack et al. (2019), estimating preferences through a conditional logit model on feasible STEM
graduate schools.

Table B6 in the Appendix presents the results of the same decomposition as Table 2, but using the full

sample of prep program students. The advantage of this analysis is the increased sample size (N=165,418

compared to N=8,778), while the drawback is the lack of detailed information on within-prep program

performance, aside from whether the student was enrolled in a star class, which is a crude measure of

prep program performance. According to this decomposition, previous achievement does not explain the

gender gap in access to top programs (-13%). Achievement during the prep program, measured roughly

by star class status, explains 31%. The choice of competitive exams accounts for 24%, performance on the

exam day (D-Day) accounts for 56%, and preferences for graduate schools do not explain this gap at all.

Overall, we are able to observe which factors drive the gender gap in admission to the top 10% most

selective graduate schools. We show that this gap is primarily explained by an increasing gender gap

in performance between the entry point and the end point of the preparatory program, and to a lesser

extent, by differences in performance on the exam day (D-Day). This suggests that studies focusing only

on performance on the day of the exam miss a significant aspect: the widening gender gap in performance
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during exam preparation. It also highlights the need to explore the impact of the learning environment

on the performance of both genders.

In the following section, we leverage the variation in the learning environment induced by the tracking

between star and standard classes in prep programs to observe how changes in the learning environment

for exam preparation affect each gender differently.

5 Results

In this section, we aim to test the hypothesis that the competitive learning environment within prepara-

tory programs disproportionately benefits male students’ performance over female students’, thereby

widening the gender gap in performance over time in the prep programs. Addressing this question re-

quire exogenous variation in the competitiveness of the learning environment experienced by students.

We therefore leverage a specific feature of these programs: the tracking in the second year between star

and standard classes. The star classes are comprised of the higher-achieving students, which effectively

creates a more selective and competitive learning environment. Star classes feature increased selection,

heightened competition, enhanced intellectual stimulation, and a more rigorous preparation for the STEM

graduate schools’ entrance examinations. We thus examine whether preparing exams in a star class, as

opposed to a standard class, has a different impact on the success of male and female students at the

competitive entrance examinations using two different complementary methodologies.

First, we discuss the average relative performance of male and female students in star and standard

classes, while controlling for detailed previous academic achievement. Secondly, we study what is hap-

pening for students at the margin of star class admission, using a regression discontinuity design. The

first methodology uses the full sample of prep program students enrolled in a program that offers both

standard and star classes (N=89,065) to estimate an Average Treatment Effect (ATE): it does not specif-

ically focus on students who are marginally admitted to star classes. However, it does not allow us to

control for unobservable factors that may impact differently male and female students after prep pro-

gram entry, though it does control for detailed achievement just before entry. The second methodology

applies to a smaller subsample (N=6,782 in the RDD sample) and estimates a Local Average Treatment Ef-

fect (LATE) valid only for students at the margin of star class admission. The strength of this approach is

its robustness to unobservable factors, as it compares students with similar observable and unobservable

characteristics who differ only by star class status.

In the last part of the section, we discuss the mechanisms that could explain the increased gender gap

in star classes compared to standard classes.
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5.1 Comparison of Star and Standard Classes

We aim to uncover the gender differential impact of preparing exams in a more selective and competitive

environments on students’ academic success. This analysis constitutes a “double” difference, comparing

both gender (male students versus female students) and class status (star versus standard). In this analysis,

we restrict the full sample of students to the combinations of tracks and prep programs that have both

a standard and a star class, as we aim to compare similar students who differ only in their second-year

class status. This reduces the sample to 54 percent of the original sample (see Table B3 in the Appendix).

5.1.1 Empirical Strategy

We compare the average relative performance of male and female students preparing for exams in star

and standard classes, while we control for detailed previous academic achievement. We thus perform the

following reduced-form estimation:

yikpc = α0 + α1 × Fi × Si + α2 × Fi + α3 × Si + γXi + λk + λp + λc + εikpc (2)

where yikpc is a dummy variable that takes value 1 if student i in track k in program p in cohort c

is admitted in a STEM graduate school in the top 10% of selectivity or desirability, Fi is an indicator of

individual i being a female student, Si is an indicator of a individual i being enrolled in a star class, Xi is

a vector of characteristics of student i, including detailed measures of previous academic achievement.28

We include track (λk), program (λp) and cohort (λc) fixed effects. We estimate Equation 2 with a linear

probability model, and test the robustness of our results with a probit model (Table C23 in the Appendix).

Our coefficient of interest is α1.

To ensure that our results regarding the interaction between star class and gender are not influenced by

the gender differential impact of other observable characteristics, we also perform the following reduced-

form equation:

yikpc = α0 + α1 × Fi × Si + α2 × Si + γMXi + γFXi × Fi + (1 + Fi)× (λk + λp + λc) + εikpc (3)

This equation closely resembles Equation 2, with the introduction of interactions between all observ-

28Demographic controls include geographic origin (Paris or Parisian area), low-income status, the socioeconomic status of each
parent (into four categories), French nationality, repeater status, disability status, whether the student was in a science academic
track during high school, the student’s option (either engineering science or computer science), and the gender composition in
the track × program. Previous ability is controlled by (i) decile rank dummy variables from both high school and middle school
graduation exams GPA, and (ii) quintile rank dummy variables for each grades at the high and middle school graduation exams
at the subjects studied in prep programs — mathematics, physics and chemistry, engineering science, French (both written and
oral), and foreign languages.
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able characteristics and fixed effects with gender.

For the double difference between gender and star class status to capture the differential impact of

star classes on male and female achievement, we must make three assumptions:

Assumption 1 Assignment to a star class is determined solely by ability.

Assumption 2 The variance in the achievement distribution of male and female students at entering prep program

is similar.

Assumption 3 There is an overlap between the competitive exams taken by standard and star class students.

We test these assumptions using data on previous academic achievements, including high school exam

results, detailed program grade data, and responses from a teacher survey.

Assumption 1. Assumption 1 posits that top-performing first-year students, regardless of gender, are

placed in star classes for their second year, with no affirmative action for female students. If women

had easier access to star classes, our coefficient regarding the gender gap in performance specific to those

classes would be biased. This assumption aligns with prep programs’ goals of enhancing success rates in

entrance exams, as they are ranked based on this metric in popular student rankings. However, the signif-

icant underrepresentation of female students in STEM, especially in star classes, raises the possibility of

lower-achieving females being admitted to maintain gender balance or support their STEM engagement.

Our data from 18 prep programs, covering 14,746 students, allows us to examine this assumption

(Table C8). Results show that women have less access to star classes, but the gender gap disappears when

adjusting for detailed subject grades,29 indicating no gender gains easier access to star classes, given

equivalent academic performance. Similarly, the size of the first stage of the regression discontinuity is

very similar for men and women, showing that when they cross the eligibility threshold, men and women

have the same probability of gaining access to star classes, thus supporting Assumption 1 (Table 5).

Furthermore, a 2021 survey of prep program teachers from 14 high schools, with a 70% response rate,

corroborates this finding. All respondents confirmed that star class admissions are based solely on first-

year academic performance, with no gender preference for students with the same achievement level.

Assumption 2. Assumption 2 posits equal variance in male and female students’ achievements upon

entering prep programs. If male students’ abilities are more spread out while female students cluster

29We control for (i) decile rank dummy variables for the GPA, and (ii) quintile rank dummy variables for grades in mathemat-
ics, physics and chemistry, engineering science, computer science, French, and foreign languages.
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around the mean, our method would isolate true ability differences rather than the competitive envi-

ronment’s effect on students. The argument of higher variability in male students’ performance is often

cited as an explanatory factor in the literature on gender achievement gaps (Hedges and Nowell, 1995;

Machin and Pekkarinen, 2008; Johnson et al., 2009); however, few explanations have been found for this

observation despite its occurrence in various contexts.

Our teacher survey in prep classes shows 64% observe no difference in gender achievements at the end

of the first year.30 Furthermore, analysis of high school graduation scores, adjusted by exam coefficients,

confirms similar variance between genders, supporting Assumption 2. The standard deviation of the

weighted percentile rank on the high school graduation exam scores is 28.1 for male students compared

to 28.0 for female students. We cannot reject at the 10% level the test of equality of variance between male

and female distributions of the weighted high school graduation exam GPA.

We also present evidence in Table C10 and Figure 6 showing that there were as many students at the

top of the distribution among future star class enrollees before entering the star class, strongly supporting

Assumption 2.

Overall, it does not appear that our results are driven by more variance in the ability of male students

than female ones prior to entering these programs.

Assumption 3. We examined the overlap in exams between students in standard and star classes to

confirm that the star class effect is on the learning environment rather than the exam-taking context. To

differentiate, we defined exams leading to only top-tier schools as very selective and those leading to at least

one top-tier school as selective. Findings show 98% of star class students take at least one selective exam

(versus 89% in standard classes), and 84% take a very selective exam (versus 57% in standard classes),

with star class students attempting more exams on average. Despite significant overlap in the exams

taken, some difference persists, so we include a robustness test of our main results controlling for the

number and type of exams taken (see Table C27).

5.1.2 Results

In this section, we present our results on the impact of studying in a more selective and competitive

environment on female students compared to their male counterparts, specifically on the access to top 10%

STEM graduate schools. We then proceed with a heterogeneity analysis and conduct several robustness

checks.
30Among the others, 18% state that male students are higher-achieving (which does not pose a threat to our identification

strategy), 9% say female students are higher-achieving, 3% perceive male students are more centered around the mean with
females in the tails, and 3% view the opposite.
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Impact on access to top 10% STEM graduate schools. We present the results of a double difference

between gender and star class status in Table 4, while controlling for detailed previous achievement.

The initial two columns refer to graduate school selectivity, measured by the average percentile rank of

admitted students at the high school graduation exam. In contrast, the last two columns refer to school de-

sirability, based on the revealed preferences of applicants (Avery et al., 2013). Columns (1) and (3) exhibit

the outcomes derived from Equation 2, while Columns (2) and (4) present the results from Equation 3,

with all control variables and fixed effects interacted with gender.

Table 4: Access to STEM Graduate Schools in the Top 10 Percent of Selectivity

(1) (2) (3) (4)
Top 10% Top 10% Top 10% Top 10%

grad. schools grad. schools grad. schools grad. schools
(Selectivity) (Selectivity) (Desirability) (Desirability)

Baseline proba. of access 0.22 0.22 0.23 0.23

Female student × Star class -0.042∗∗∗ -0.033∗∗∗ -0.058∗∗∗ -0.046∗∗∗

(0.0061) (0.0064) (0.0060) (0.0064)

Star class 0.27∗∗∗ 0.27∗∗∗ 0.29∗∗∗ 0.28∗∗∗

(0.0061) (0.0062) (0.0061) (0.0062)

Female student -0.027∗∗∗ -0.028∗∗∗

(0.0031) (0.0030)

Demographic Controls X X X X
MS & HS Exam Score X X X X

Year FE X X X X
Track FE X X X X
Program FE X X X X

Demographic Controls × Female student X X
MS & HS Exam Score × Female student X X

Year Fixed-Effects × Female student X X
Track Fixed-Effects × Female student X X
Program Fixed-Effects × Female student X X

N 89,065 89,065 89,065 89,065
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table illustrates the change in the probability of admission to top-tier STEM graduate schools for female students in star classes over
the period 2015-2023. Selectivity of schools is measured in two ways: Columns (1) and (2) use the average percentile rank of admitted students
at the high school graduation exam, while Columns (3) and (4) are based on the revealed preferences of applicants (Avery et al., 2013). In
Columns (2) and (4), we include interactions of all controls and fixed-effects with a gender dummy variable, allowing observable characteristics
to have gender-specific performance impacts. Demographic controls include geographic origin (Paris or Parisian area), low-income status, the
socio-economic status of each parent (into four categories), French nationality, repeater status, disability status, whether the student was in a
science academic track during high school, the student’s option (either engineering science or computer science), and the gender composition
in the track × program. Previous ability is controlled by (i) decile rank dummy variables from both high school and middle school graduation
exams GPA, and (ii) quintile rank dummy variables for each grades at the high and middle school graduation exams at the subjects studied in
prep programs — mathematics, physics and chemistry, engineering science, French (both written and oral), and foreign languages. We include
year, track and program fixed effects. Standard errors are clustered at the track × program × cohort level. For a comprehensive list of coefficients
on the demographic control variables, refer to Table C11 in the Appendix.

All specifications show that female students benefit less from the selective and competitive educa-
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tional environment of the star classes than their male counterparts. The gender gap in access to top-tier

schools is wider in star classes compared to the same gender gap in standard classes. Our preferred

estimates in Column (2) quantifies that, relative to the gender gap observed in standard classes, female

students in star classes have a 3.3 percentage points lower probability of admission to the top-tier STEM

graduate schools than male students in star classes. This 3.3 percentage points reduction corresponds to

a 15 percent decrease in the probability of admission from a baseline admission probability of 22 percent.

Similarly, female students have a lower probability of admission to top 10% desirable STEM graduate

schools of 4.6 percentage points (Column 4), which represent a 20 percent reduction from baseline.31 The

gender gap in accessing top-tier STEM schools significantly differs between star and standard class stu-

dents, being more than twice as large for star class students, at 6.0 (2.7 + 3.3) percentage points, compared

to 2.7 percentage points for standard class students.

Interestingly, for both definitions of school selectivity, the coefficient with the interaction of all control

variables and fixed effects with gender is about 80% of the coefficient without these interactions (3.34.2 and
4.6
5.8 ). This suggests that the differential impact of observable characteristics at baseline on male and female

students, particularly the differential impact of previous ability on future ability, could explain at most

20% of the increased gender gap observed in star classes.

During the Prep Programs. We use the subsample of students for whom we collected grades during the

prep program to observe the double difference (Equation 2) in the probability of being among the high

achievers in the class, both before and after entering the star classes. The results are presented in Figure 6

and Table C10 in the Appendix. Overall, the results indicate that a gender gap in the probability of being

among the top achievers emerges after star class entry. Table C10 shows no significant gender gap in the

likelihood of being among the high achievers during the first year, but a significant gap emerges after star

class entry: women are 4.6 percentage points less likely to be among the top 20% of the class than their

male counterparts in star classes, with minimal differences in standard classes. Consistent with these

results, Figure B10(b) illustrates that the gender gap in the probability of being among high achievers is

more pronounced in star classes compared to standard classes.

Impact on expected earnings. We do not possess individual salary data; however, we have retrieved

median salaries disaggregated by graduate school, cohort, and gender for the various STEM graduate

schools in our sample from the CTI website. In our STEM graduate sample, the unadjusted gender pay

31Table C11 in the Appendix displays all the coefficients of the control variables included in the regression of Equation 2.
Generally, students from high socioeconomic status have a higher probability to get an offer from a top-tier STEM graduate
school, as do repeaters and students from Paris or, to a lesser extent, the Parisian area. Conversely, need-based scholarship
recipients tend to perform less well. The proportion of female students in the track × program has no impact in our setting on
student performance, and we verified that this holds true for both genders separately.
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Figure 6: Probability To Be Among the Top of the Class, by Gender and Star Class Status
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Notes: The figure shows the change in the probability of being among the top of the class (top 10%, top 20%, top 30%, top 40%, top 50%) during
the prep programs for female students in future star classes on the left-hand side, and in actual star classes on the right-hand side. We use
percentile rank weighted GPA to rank students. Demographic controls include geographic origin (Paris or Parisian area), low-income status,
socio-economic status of each parent (four categories), French nationality, disability status, high school science academic track, student’s option
(engineering science or computer science), and the gender composition in the track × program. The sample is restricted to non-repeaters.

gap is e1,600. After incorporating STEM school fixed effects, the gap reduces to e750, or about 50% of

the initial gap. This suggests that an important part of the gender pay gap among engineers is due to

differences in access to STEM graduate schools with the best labor market outcomes.

Table C12 in the Appendix presents the effect of studying in a more selective and competitive study

environment on the median expected salaries of female and male engineering students, one year after

graduation. Columns (1) and (2) use earnings without bonuses, while Columns (3) and (4) use earnings

with bonuses. As in our main results in Table 4, we interact all observable characteristics and fixed ef-

fects with gender in Columns (2) and (4). The gender gap in expected earnings is approximately 40 to 70

percent larger (depending on the inclusion of bonuses) among alumni of the star class than among those

from standard classes. Specifically, our preferred estimates in Column (4) indicate that for female stu-

dents preparing for entrance exams in a more competitive environment, the gender pay gap — including

bonuses — increases by around e900 compared to those in a less competitive learning environment. This

represents a 2.0 percent decrease in expected annual earnings, based on a baseline of e42,234. Even right

after graduation, and when using aggregate wage data, we find that the impact of the competitive envi-

ronment created by this selective STEM program on the gender wage gap is significant, albeit relatively

small. A different impact might be observed with individual salary data or with salary data later in the
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career. These results also confirm the prevalence of the gender pay gap at the upper end of the earnings

distribution among STEM workers, a phenomenon observed in previous literature (Blau and Kahn, 2017).

Heterogeneity. In this section, we present the heterogeneity of our main results by parental income

status, prior academic achievement, and repeater status.

By income status. The gender gap in access to top STEM graduate schools for star class students in-

creases significantly more for low-income students than for high-income students, both in absolute and

relative terms (see Table C14).32 Specifically, low-income female students in a star class are relatively 5.4

percentage points less likely to gain admission to top STEM graduate schools compared to their low-

income male peers, which corresponds to a 39% reduction from baseline. Results regarding school desir-

ability follow a similar pattern.

By initial prior achievement. Table C15 presents the results segmented by initial achievement quartiles

of students.33 The increased gender gap in performance observed in star classes is significant across the

achievement distribution but is considerably higher in relative terms at the bottom of the distribution

compared to the top. Results for school desirability, detailed in Table C16, follow a similar pattern.

By prep program selectivity. We observe heterogeneity by the selectivity of prep programs (Table C17),

defined by the percentile rank of admitted students at the high school graduation exam, similar to grad-

uate schools. The negative effect of star classes on women is more pronounced in absolute terms in mid-

selectivity prep programs and in relative terms in less selective prep programs. However, in the most

selective prep programs the negative gender effect is more pronounced across the entire sample, not just

in star classes (for which the effect is not significantly different than in standard classes), suggesting that

all classes in these programs might foster a competitive environment.

By repeater status. Approximately 20 percent of students opt to repeat the second year of the prep

program decide to retake the competitive entrance exams in order to improve their admission outcomes.

This decision is correlated with gender; around 21 percent of men choose to repeat, compared to only

16 percent of women. While we control for repeater status in the main regression, we verify whether

our results are consistent across repeater status. Overall, the outcomes are relatively similar for students

attempting the exam for the first or second time (Table C18). This suggests that repeating does not enable

female students in star classes to bridge the performance gap with their male counterparts, nor does

it exacerbate it. To scrutinize this further, we conduct the same regression as in Equation 2, but with

repeater status substituted for star class status, to discern the differential impact of repeating on male and

32As our data do not include a detailed measure of parental income, we use need-based scholarship status as a proxy, cate-
gorizing need-based scholarship recipients as low-income students and non-need-based scholarship recipients as high-income
students.

33Achievement is measured through re-weighted GPA from the high school graduation exam, using weights equivalent to
those of the most selective competitive exams, as shown in Table A1.
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female students. The results are shown in the Appendix in Table C13. These findings imply that there

is no differential impact of repeating on male and female students, suggesting that for female who opt

to remain in the competitive environment of the prep program, there is no gender-disparate impact from

additional time spent in these programs. This could imply that once they become accustomed to this

competitive environment, female students may benefit from it as much as their male counterparts do.

Robustness checks. In the Appendix, we display various specifications to verify the robustness of our

results.

Placebo test. First, we conduct two placebo tests using end-of-high-school GPA and first-year prep

program GPA to ensure that our findings are not influenced by pre-existing differences in performance

between genders and future star class statuses prior to entering the star class. Tables C19 and C20 show

that, before entering star classes, there is no gender disparity in initial performance between students

destined for standard and star classes.

Controlling for Program Grades. Table C9 presents our results, adjusting for first-year grades of ap-

proximately 10,000 students. Including first-semester grades slightly reduces our baseline estimate, but

it remains significant at the 5 percent level. Notably, the sample size for this analysis is smaller. When

controlling for end-of-year grades, the gender effect of competitive classes on performance loses statistical

significance, though the estimates remain negative and close to initial figures in terms of magnitude. This

suggests the gender gap might partly emerges during the first year, becoming more pronounced in the

second year as students are tracked into standard and star classes.

Revealed preferences of female students. Table C21 shows results with school selectivity defined based

on the revealed preferences of female students. Given that, as discussed in Section 4, the preferences of

female students are very similar to those of their male counterparts34, the results are quite comparable to

our baseline estimates, albeit slightly larger.

Other definitions of selectivity. Table C22 tests our results with different definitions of STEM graduate

school selectivity. The findings remain consistent whether selectivity is based on average school rankings

or the top 20% of schools instead of the top 10%. For female students in star classes compared to their

male peers, school selectivity decreases by an average of 0.40 ranks, translating to a 0.5% reduction in

average school selectivity. The gender gap in school desirability increases by 0.13 ranks in star classes, a

14% amplification. The gender gap also broadens for access to the top quintile of selective schools, though

less than for the top 10% (a 6% reduction in selectivity and an 8% reduction in desirability), indicating the

most significant gender gap occurs at the very top of the school selectivity distribution.

Probit model. In Table C23, we show that our findings remain robust when using a probit model instead

34Refer to Table B4 for the list of schools categorized by each selectivity definition
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of a linear probability model.

Interaction of fixed effects. We further ensure the robustness of our results by interacting the year, prep

program and track fixed effects together, allowing program quality to vary over time and tracks. The

outcomes of this analysis are shown in Table C24 and the impact of being a female student in a star class

on gaining admission to STEM graduate schools in the top 10% of selectivity is very similar to our main

estimates in Table 4.

Controlling for the number of selective exams taken. Students in standard and star classes do not take

exactly the same exams. To ensure our results are not solely due to differences in exam types, we replicated

the results in Table 4, controlling for the number of selective exams taken using fixed effects.35 The results,

presented in Table C27, closely match our baseline estimates. This suggests the observed effect is more

attributable to changes in the exam preparation setting rather than changes in the competitiveness of the

testing environment.

Results track-by-track. We check the consistency of our results across all tracks. Table C25 and C26

indicates that the observed increase in the gender gap for access to top 10% STEM graduate schools within

star classes is present in every track.36.

Results year-by-year. We verify the consistency of our results across different years. All coefficients are

negative and display a similar magnitude, though the negative effects seem somewhat intensified post-

Covid — from 2020 to 2023 (refer to Table C28 for school selectivity and Table C29 for school desirability).

In this section, we observed a widening gender gap in the likelihood of accessing top-tier STEM grad-

uate schools among students preparing exams in more competitive environments (star classes) compared

to less competitive ones (standard classes). This suggests that the learning environment exacerbates the

gender performance gap. The double difference strategy, conducted on the full sample (N=89,065) and

closer to an average treatment effect (ATE), cannot control for unobservable factors that may develop

differently among male and female students after star class entry; it only controls for previous academic

achievement.

In the following section, we present a complementary analysis using a regression discontinuity (RD)

approach at the margin of star class entry.

35We include fixed effects for the number of (1) very selective exams (leading to only top-tier schools) and (2) selective exams
(leading to at least one top-tier school).

36Specifically, for students in track 1 (MP), being a female in the most competitive classes reduces the probability of admission
to the most selective STEM graduate schools by 3.9 p.p., corresponding to a 14% reduction. The reductions are 4.3 p.p. (21%) for
track 2 (PC) students, 5.3 p.p. (25%) for track 3 (PSI) students, and 3.7 p.p. (74%) for track 4 (PT) students.
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5.2 Regression Discontinuity at the Margin of Star Class Admission

We control for a wide array of observable characteristics in the double difference analysis by gender and

star class status. However, to ensure that unobservable characteristics differing by gender are not driving

the results, we also perform a regression discontinuity analysis at the margin of star class admission.

This second methodology provides estimates with greater internal validity, as it compares students who

are very similar in both observable and unobservable characteristics, differing only in their access to star

classes. Nonetheless, this approach has the drawback of reduced external validity. This is due to (i) the

regression discontinuity design yielding a local average treatment effect that is only applicable to students

at the margin of star class entry, and (ii) the analysis being limited to the smaller subsample of students

for whom we have detailed grade data throughout the program (N=6,782) .

5.2.1 Methodology

We aim to estimate the effect of enrollment in a star class on the probability of gaining admission to one of

the top 10% most selective STEM graduate schools, by gender. We leverage the tracking feature present in

most prep programs: at the end of the first year, students are divided into star and standard classes based

on their performance. In most programs, students are free to accept or decline this offer, creating a context

suitable for a fuzzy regression discontinuity design. This analysis is very close to the one performed by

Landaud and Maurin (2020). We depart from them by specifically examining the gender differential effect

of enrollment in a star class, using a larger and more diverse sample of programs across France.

Unlike most regression discontinuity settings, we do not have direct information on the exact running

variable and cutoff used for star class admission.37 Given the variety of programs and classes in our study,

the first step of our analysis is to identify an appropriate running variable and cutoff.

Discussions with prep program teachers confirmed that students gain admission to star classes based

on their end-of-first-year class ranking in terms of GPA and the capacity constraints of star classes in their

program and track. Therefore, we chose to use students’ class rank as the running variable to determine

their eligibility for star class enrollment.38 Consequently, we chose to use students’ class rank as the

running variable to determine their eligibility for star class enrollment.

Definition of the threshold. We identify the rank threshold at which a significant discontinuity in the

probability of accessing a star class is observed in each program. We are reasonably certain that such a

discontinuity exists, although its precise value is unknown to us. Therefore, we build on the methodology

37We collected data on grades throughout the prep programs but were not provided with the precise running variable and
threshold used for admission to star classes.

38To rank students, we consider their end-of-first-year weighted GPA, calculated using either weights directly provided by the
prep programs or weights equivalent to those of the most selective competitive exams (Table A1).
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defined by Hansen (2000) to extract these cutoffs for each class in our sample. This approach has been

widely adopted in contexts similar to ours (Hoekstra, 2009; Landaud et al., 2020; Bütikofer et al., 2023),

particularly since Porter and Yu (2015) showed that this methodology can be used with a regression dis-

continuity design. We identify the rank within each class, in each prep program, for each academic year

that exhibits the most pronounced discontinuity in the probability of star class admission.39

We normalize the cutoff to 0 for all classes. Hence, our running variable is essentially the relative rank

distance to the estimated cutoff of star class admission. Following Fort et al. (2022) recommendations for

multi-cutoff RD analysis, we include prep program × class fixed effects in our analyses.

RDD sample. The algorithm used to identify a fuzzy discontinuity in star class admission tends to

consistently pinpoint a discontinuity between one student admitted to the star class and one student

enrolled in the standard class. These students are outliers: the one on the right side of the threshold

is very likely to be an always-taker (enrolling in the star class anyway, even though students ranked

above do not), while the one on the left side of the threshold is likely to be a never-taker (not enrolling

in the star class, even though students ranked below do). Including these individuals in our estimation

sample could bias our estimates (De Chaisemartin and Behaghel, 2020), as they are likely to have specific

unobservable characteristics that make them always-takers or never-takers, which could be correlated

with their admission to the most selective STEM graduate schools.

Subsequently, we define our RD sample as balanced, retaining an equal number of students from each

side of the cutoff for each class.40 Finally, we exclude observations whose running variables are above 18

or below -18, to omit running variable values for which very few programs are observed.41 This ensure

at least 20 students per running variable value.

First stage. Our method identifies a fuzzy regression discontinuity. Not all students above the estimated

threshold enter star classes, nor do all students below it attend standard classes. Table 5 and Figures D11

display the fist stage of the regression discontinuity42 The first stage is around 0.90, meaning that being

above the cutoff increases the probability of star class admission by 90%. This indicates that our method

for identifying the running variable and cutoff is effective. The effect is of similar magnitude for both men

and women (although noisier for women due to a much smaller sample size). This supports Assumption

39We select the cutoff that yields the highest R2 value when we regress a dummy variable taking a value of one if a student
accesses a star class on a dummy variable taking a value of one if a student’s rank is above the rank under consideration. This
process is repeated for all ranks within a given class.

40For instance, consider a class of 30 students: the top 10 students enroll in the star class while the remaining 20 attend a
standard class. In this case, we would only include the top 20 students in our analysis to have a balanced sample of students
around the threshold.

41The average class size in our sample is 35 students (with a maximum of 48 and a minimum of 10).
42Note that the coefficients in the table and graph differ slightly because the graph does not include program × class fixed

effects, while the table does.

34



1: male and female students are admitted to star classes based on the same criteria and with similar

magnitudes around the threshold.

Table 5: First Stage of the Regression Discontinuity, by Gender

(1) (2) (3)
Star Class Star Class Star Class

(All Students) (Male Students) (Female Students)

Baseline mean 0.08 0.09 0.05
(Below cutoff)

Baseline RD estimate 0.90*** 0.92*** 1.00***
(0.06) (0.06) (0.11)

Robust 95% CI [0.78 ; 1.02] [0.81 ; 1.04] [0.78 ; 1.21]
Obs. used in estimation 1,778 1,303 316
Total number of obs. 6,782 4,934 1,848

Notes: This table presents the non-parametric regression discontinuity estimates of the probability of attending a star class, constituting the first
stage of our RD analysis. These estimates are based on Calonico et al. (2017, 2019). We display the first stage using the optimal bandwidth
selection of our main estimates (Table 7). Selectivity of graduate schools is measured using the percentile rank from high school graduation
exam results of admitted students. The running variable is defined the distance between a student’s rank and the estimated cutoff rank for star
class admission, computed at the class × track × prep program × year. We include program × class fixed effects. Standard errors are clustered at
the level of the running variable.

Density test. Figure D12 in the Appendix shows the density of the running variable around the thresh-

old, based on Cattaneo et al. (2018). The density is continuous and symmetric around the estimated star

class entry threshold, due to the sample restrictions described above.

Balance of observable characteristics. We test for the balance of observable characteristics in Table 6.

The threshold was set by the algorithm where the most significant disparity in star class admission is

evident. This means that “real differences” in observable characteristics may exist at this point. How-

ever, for our gender-based analysis, it is important that no gender-differentiated selection in observable

characteristics is evident at the threshold. Panel A shows that demographic characteristics are perfectly

balanced around the threshold for both male and female students. Panel B shows that previous academic

achievement is slightly less balanced. The sample is balanced around the threshold for both male and

female students regarding GPA at the end of the first year, just before entering the star classes. This is

reassuring since GPA is the basis of our running variable, students’ rank in the class. However, there are

some gender imbalances around the cutoff for mathematics, physics, and foreign language grades at the

end of the first year. The coefficients for male and female students are of the same sign and magnitudes

for mathematics and foreign language. For physics, it seems to be imbalanced only for male students. To

ensure these imbalances do not affect our regression discontinuity estimates, we included these variables

as controls in a robustness check in Table D37. The results are similar to our main estimates, indicating
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Table 6: Balance of Observable Characteristics Around the RD Threshold, by Gender

All Students Male Students Female Students

Baseline
mean

(1)

RD
Estimate

(2)

Baseline
mean

(3)

RD
Estimate

(4)

Baseline
mean

(5)

RD
Estimate

(6)

Panel A. Demographics
Female 0.27 -0.03 – – – –

(0.09)

Age 19.34 0.03 19.34 -0.15 19.32 0.35
(0.14) (0.24) (0.31)

Need-based scholarship holder 0.24 0.04 0.24 0.07 0.24 -0.07
(0.14) (0.17) (0.14)

High SES 0.81 0.01 0.82 0.03 0.80 -0.05
(0.13) (0.16) (0.23)

From Paris 0.10 0.02 0.10 -0.06 0.09 -0.00
(0.10) (0.12) (0.11)

Panel B. Previous Academic Achievement
Highest honor at HS graduation exam 0.76 -0.00 0.73 0.01 0.84 -0.05

(0.08) (0.09) (0.17)

Percentile Rank GPA in 1st Year - 2nd Semester 0.51 -0.01 0.51 0.00 0.50 -0.01
(0.03) (0.04) (0.05)

Percentile Rank in Math in 1st Year - 2nd Semester 0.51 0.14** 0.53 0.14** 0.46 0.14
(0.06) (0.07) (0.11)

Percentile Rank in Physics in 1st Year - 2nd Semester 0.51 0.07 0.53 0.10** 0.48 -0.03
(0.06) (0.05) (0.12)

Percentile Rank in French in 1st Year - 2nd Semester 0.51 -0.14 0.47 -0.13 0.61 -0.05
(0.09) (0.10) (0.09)

Percentile Rank in Foreign Language in 1st Year - 2nd Semester 0.51 -0.25*** 0.48 -0.26** 0.59 -0.19
(0.08) (0.11) (0.18)

Panel D. All Baseline Characteristics Jointly
F-Stat 8.943 6.791 2.914
P-value 0.000 0.000 0.001

N. 6,782 4,934 1,848

Notes: This table presents non-parametric regression discontinuity biased-corrected estimates based on Calonico et al. (2017, 2019) to compare
the characteristics of students near the cutoff for star class admission, by gender. Panel A and Panel B each assess different aspects of students’
characteristics at this cutoff. Each coefficient results from a separate regression, where the student’s relative distance to the cutoff serves as
the running variable. Non-parametric estimates use a triangular kernel, with optimal bandwidths calculated separately for each outcome and
sample. Columns 1, 3, and 5 display the mean value of the dependent variable for students below the cutoff. We include prep program × class
fixed effects. Standard errors are in parentheses.
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that our findings are not driven by these imbalances.43

5.2.2 Results

Our regression discontinuity analysis reveals a gender discrepancy in outcomes (Figure 7). Male students

increase their chances of admission to top 10% STEM schools by attending a star class, while the effect

seems null for female students. The graphs show that although accessing star classes seems to have a

null effect for female students, the slope is steeper for female star class students compared to female

standard class students. This suggests that star classes might slightly improve their performance gain,

even if not significantly for students marginally admitted. Additionally, the graphs indicate that gender

differences seem to occur at the very top of the distribution: the probability of male students accessing

top graduate schools increases exponentially, while it collapses for female students. However, the RDD

results discussed here are only informative for marginal students.

Figure 7: Admission to Top 10% Most Selective STEM Graduate Schools, by Gender
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(b) Female Students

Notes: These figures depict the probability of admission to top-tier STEM graduate schools over the period 2015-2023, around the margin of star
class admission, by gender. Selectivity of schools is measured using the percentile rank from high school graduation exam results of admitted
students. The running variable is defined as the distance between a student’s rank and the estimated threshold rank for star class admission,
computed at the class × track × prep program × year level.

We perform a fuzzy regression discontinuity analysis on the effect of accessing star classes on admis-

sion to the most selective graduate schools (Table 7).44 Star classes significantly increase the likelihood of

admission to the top 10% of STEM graduate schools. At the margin, the probability increases by 13.1 per-

centage points, an 120% increase from a baseline of 11%. These findings align with results from Landaud

43As an additional check, we regressed the admission to a top 10% STEM graduate schools on the percentile rank of the
mathematics grade at the end of the second semester of the first year. We find that a 0.14 higher percentile rank in mathematics
at the end of the first year of prep program is associated with an increase of 0.07 in the probability of admission to a top 10%
STEM school. This is reassuring because it means that the imbalance in mathematics grades around the cutoff could not explain
all the positive effect we observe on admission to a top 10% school at the cutoff.

44Figure 7 and Table 7 display slightly different results. Figure 7 plots the pooled intent-to-treat effect of gaining admission to
a star class, while Table 7 provides the 2SLS estimates, including prep program × class fixed effects, following Fort et al. (2022)
recommendations.
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and Maurin (2022) on one preparatory program.

Our findings indicate significant gender-based heterogeneity in the results. For male students, en-

rolling in a star class significantly increases the likelihood of admission to the top 10% most selective

STEM graduate schools by 20 percentage points, a 180% increase from male students below the cutoff,

significant at the 1 percent level. In contrast, for female students, the effect is negative but only marginally

significant (at the 10 percent level only). Estimates varying bandwidth size show that most intervals are

compatible with a null effect for women (Figure D15). The effects for female and male students are statis-

tically different from each other.

Table 7: Admission to Top 10% Most Selectivite STEM Graduate Schools, by Gender

(1) (2) (3)
Top 10 Top 10 Top 10

decile of decile of decile of
selectivity selectivity selectivity

(All students) (Male students) (Female students)

Baseline mean 0.11 0.11 0.09
(Below cutoff)

Baseline RD estimate 0.131*** 0.202*** -0.119*
(0.046) (0.048) (0.070)

Robust 95% CI [0.040 ; 0.221] [0.108 ; 0.296] [-0.255 ; 0.018]
Obs. used in estimation 1,778 1,303 814
Total number of obs. 6,782 4,934 1,848

Notes: This table displays the fuzzy non-parametric regression discontinuity estimates of admission probability to top-tier STEM graduate
schools. These estimates are based on Calonico et al. (2017, 2019). In alignment with recent advancements in regression discontinuity literature,
we include bias-corrected estimates and robust standard errors. School selectivity is measured using the percentile rank from high school
graduation exam results of admitted students. The running variable is defined as the distance between a student’s rank and the cutoff rank
for star class admission, computed at the class × track × prep program × year. Our analysis includes controls for program × class fixed effects.
Standard errors are clustered at the level of the running variable.

We run several robustness tests of the main results in Appendix Section D4.3. The results are quite

sensitive to the definition of graduate school selectivity, showing a null effect of star class admission

on women when using school desirability (Table D30) and even positive effects when using graduate

school desirability for female students (Table D31). This highlights the need for cautious interpretation.

However, the effects are larger for men in all these specifications.

We find that our main results holds when: (i) we do not cluster at the running variable level (Ta-

ble D32); (ii), we increase the bandwidth size (Figure D15, Tables D34 and D35); (iii) we take a local

polynomial of order two (Table D36); (iv) we control for the unbalanced grades around the cutoff (Ta-

ble D37); (v) we include prep programs × class × year fixed effects (Table D38); (vi) we perform a local

randomization analysis,45 which is an alternative methodology in the case of a regression discontinuity

45With this methodology, appropriate for discrete running variables like in our case, we focus on students around the cutoff,
retaining the 4 students below and 4 students above, which corresponds to the optimal bandwidth computed by Calonico et al.
(2019). We then perform a simple below- and above-mean comparison to test for the local average treatment effect (LATE). The
underlying assumption is that these students are essentially randomly assigned just below or just above the cutoff.
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with a discrete running variable (Table D33).

In this section, we use the methodology developed by Hansen (2000) to identify a threshold for star

class admission and observe the causal effect of star class enrollment on students’ success in competitive

STEM graduate school entrance exams. We find that, at the margin, star class admission significantly

improves male students’ performance but has a null or even negative effect on female students. Consistent

with the previous section, star classes are found to increase the gender performance gap. In the next part,

we present the mechanisms explaining the increased gender gap in access to top programs in star classes.

5.3 Mechanisms

We have observed a higher gender gap in performance in star classes compared to standard classes, both

on average and at the margin of star class entry. Using detailed data on performance over time in the

program and on students’ preferences, we decompose the factors explaining this increased gender gap

in the probability of gaining admission to top-tier graduate schools, as discussed in Section 4 for the raw

gender gap. Results are presented in Table 8.

As for the raw gender gap, the star class-specific gender gap is not explained by previous academic

achievement (-16%). Beginning of prep program ability explains 26% of this gap (respectively 21% when

considering only explaining factors summing to 100 percent), while end of prep program performance

explains 37% (resp. 29%). The role played by specific gender differences in star class in the choice of

competitive exams is marginal (5%, resp. 4%). In contrast, the specific gender gap in performance on the

D-Day of the high-stakes exams for star class students is large, explaining 58% of the star class gender gap

(resp. 46%). As with women overall, gender differences in preferences toward STEM graduate schools

do not play a role, if not a compensatory factor limiting the under-representation of women in the most

selective programs (-13%), consistent with results from the estimation of students’ preferences (Figure 5).

Overall, the results regarding the specific gender gap in performance in star classes are relatively close

to those for the raw gender gap, except that the role of the D-Day of the exam is amplified: around half of

the gender gap specific to star class is explained by exam performance, compared to only 20% of the raw

gender gap. In contrast, the role of exam preparation is less striking, although still important: explaining

half of the star class gender gap as opposed to three-fourths of the raw gender gap. These results suggest

that the gender gap in high-stakes exam performance may be particularly significant among the high

achievers, enrolled in star classes.
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Table 8: Decomposition Gender Gap in Star Class in Access to Top 10% Most Selective Schools

Receive an offer from top 10% most selective graduate schools

(1) (2) (3) (4) (5) (6) (7)

Female student × Star class -0.038** -0.044*** -0.034** -0.020 -0.018 0.004 -0.001
(0.017) (0.016) (0.016) (0.016) (0.015) (0.013) (0.013)

Decomposition -16% 26% 37% 5% 58% -13%
% explained by additionnal control

Controls:

Demographics and Fixed-effects X X X X X X X
Star class
Female student
Demographic controls
Program, track, and year FE

Previous ability X X X X X X
HS & MS grade FE

Beginning of prep program ability X X X X X
1st year - 1st semester grade FE

End of prep program ability X X X X
2nd year - 2nd semester grade FE
Star class

Applications X X X
Apply to top school exams

D-Day Effect X X
Percentile rank at top school exams

Preferences X
Top schools in ROLs

N 8,779 8,778 8,778 8,778 8,778 8,778 8,778
Adj-R2 0.494 0.513 0.539 0.577 0.590 0.724 0.730

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table shows the evolution of the star class specific gender gap in access to the top 10% most selective graduate schools when adding
various controls. We include controls for star class and female students in all specifications. We use the subsample of students for whom
we have collected grades during the prep program to be able to control precisely for those grades. Table B7 in the Appendix displays the
same decomposition on the full sample of students, but without controls for prep program ability. The decomposition raw is computed by
observing how much the gender gap is reduced when an additional control is added, compared to the raw gender gap observed in the first
column. Selectivity of schools is defined by the average percentile rank of admitted students at the high school graduation exam. Demographic
controls include geographic origin (Paris or the Parisian area), low-income status, the socio-economic status of each parent (categorized into
four groups), French nationality, repeater status, disability status, whether the student was in a science academic track during high school,
the student’s option (either engineering science or computer science), and the gender composition in the track × program. We include year,
track, and program fixed effects. Previous ability is controlled by (i) decile rank dummy variables from both high school and middle school
graduation exams’ GPAs, and (ii) quintile rank dummy variables for each grade at the high and middle school graduation exams in the subjects
studied in prep programs—mathematics, physics and chemistry, engineering science, French (both written and oral), and foreign languages.
Prep programs’ ability controls include (i) dummy variables for each decile of the weighted GPA, and (ii) dummy variables for each quintile
in grades for mathematics, physics, chemistry, engineering science, computer science, French, and foreign languages, during the first semester
(1st year, 1st semester) and last semester (2nd year, 2nd semester) in the prep program. Applications to top graduate schools are controlled by
dummies for application to each of the exams leading to top graduate schools, defined track by track. Performance during competitive entrance
exams is controlled for by (i) dummies for whether or not the applicant is ranked at competitive exams leading to top graduate schools and (ii)
the percentile rank of their rank in those exams, controlled linearly for each entrance exam. Preferences are controlled for by adding dummy
variables for whether or not each of the top graduate schools is ranked among students’ ranked-ordered lists of schools. The order of these
variables is chosen to follow the chronological order of decisions made by students. Standard errors are clustered at the track × program × cohort
level.
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6 Conclusion

We study the STEM elite higher education programs in France to learn about potential gender gaps in

competitive entrance examinations. We provide evidence of the effects of preparing high-stakes exams

in a competitive environment on the gender performance gap in a real-life setting. Despite self-selecting

more than men into these programs, women benefit less from this selective and competitive environment.

We confirm previous findings from the literature on the increased gender performance gap during high-

stakes exams. We go beyond that by showing that an important part of the gender gap in performance is

explained by the context of the learning environment.

Specifically, studying in a star class compared to a standard one appears to decrease women’s chances

of being admitted to a top STEM graduate school by about 15 to 25 percent, relative to their male coun-

terparts. This holds true both on average — observed through a double difference analysis of male and

female students in star and standard classes, while flexibly controlling for previous academic achieve-

ment — and at the margin of star class admission. At this margin, star classes appear to significantly boost

male performance, tripling their admission chances to the top 10% most selective STEM graduate schools,

but have a null or even negative effect on the performance of female students. This increased gender gap

in performance translates into an increased gender gap in expected earnings among STEM workers just

one year after graduation. Our results could be attributed to two explanations: male students being more

willing to engage in competitive behavior, thereby increasing their performance when exposed to higher-

achieving peers; or male students helping each other more, acting as a “boys’ club” mechanism (similar to

those described in Cullen and Perez-Truglia (2023)). We cannot distinguish between these two potential

explanations in our setting; further research would be needed to do so. We observe, however, that while

the raw gender gap in access to the top programs is primarily due to the increasing gender performance

gap during exam preparation, the gender gap specific to students in star classes is more closely related to

performance differences on the exam day.

The entrance examinations to elite graduate schools are very competitive, thus their preparation as

well, and this has a gender differential effect on students’ achievement. Improving the representation

of female students in the most selective STEM institutions requires questioning the organization of their

admission processes. Our results suggest that highly competitive admission processes incur equity costs,

attributable to gender gaps in high-stakes entrance exams and their preparation. However, further re-

search would be needed to determine the efficiency of selection based on competition before drawing

conclusions about the overall effectiveness of these admission processes.
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A1 Detailed Institutional Background

Figure A1: Simplified Diagram of French Higher Education
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Notes: This diagram shows the organization of France’s main higher education tracks. The programs we study here are STEM prep programs
and STEM elite graduate schools, highlighted in blue.
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Figure A2: Maps of Preparatory Programs and STEM Graduate Schools

Prep programs Surveyed prep programs

(a) STEM Preparatory Programs

STEM graduate schools

(b) STEM Graduate Schools

Notes: These maps illustrate the geographical distribution across France of STEM preparatory programs (Panel a) and of STEM graduate schools
(Panel b). 49



Figure A3: Organization Chart of Science CPGE Programs

Notes: This diagram illustrates the various tracks within the science preparatory programs. The boxes positioned on the left represent the first
year of the program, while those on the right depict the second year. Although there are other science prep classes (such as BCPST, TB, TPC,
TSI), they are excluded from this study due to the absence of tracking between standard and star classes in their second year.

Table A1: Most Selective Competitive Exam Coefficients

Track 1 (MP) Track 2 (PC) Track 3 (PSI) Track 4 (PT)

Math. 0.36 0.24 0.28 0.18
Physics & Chemistry 0.31 – 0.32 0.18
Physics – 0.31 – –
Chemistry – 0.17 – –
Engineering Science 0.03 – 0.13 0.31
Computer Science 0.06 0.03 0.04 0.06
French 0.13 0.13 0.11 0.15
Foreign Language 0.12 0.12 0.13 0.13

Notes: This table presents the coefficients from competitive exams used to calculate the high school graduation exam weighted GPA. These
coefficients are based on the mean values from the three most selective exam clusters (Banque X-ENS, Banque Mines-Ponts and Banque Centrale).
When particular high school grades, such as computer science or engineering science, are missing, the coefficients are modified to account for
the absence of these subjects.
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B2 Complementary Descriptive Statistics

Figure B4: Diagram of the Different Samples of Analysis

Full sample (N=165,450)

Study sample (N=89,079)

Surveyed sample (N=21,801)

Matched surveyed sample
(N=14,746)

RDD sample
(N=6,782)

Notes: This diagram depicts the various subsets of data used in our study. The ’full sample’ corresponds to the universe of applicants to STEM
graduate schools from 2015 to 2023, excluding the biology track. Only applicants enrolled in prep programs located in France are included. We
retain only those prep programs that were present throughout the nine-year period covered by our data and had more than 10 students per
year. The ’study sample’ corresponds to the restriction of the full sample to combinations of program × track that have both a standard and a
star class in the second year of the program, which we use in our main analysis concerning star classes. The ’surveyed sample’ corresponds to
the data on programs we surveyed to collect data on grades earned during the prep programs. The location of these programs can be found on
the map in Figure A2. Part of the individuals surveyed were not included in our full sample, that is why the two circles do not fully overlap.
Specifically, it concerns students who dropped out of programs after the first year and those who were not in program × track with both standard
and star classes, despite these programs being specifically targeted during our data collection. The ’matched surveyed sample’ corresponds to
students that we surveyed and were able to statistically match with the administrative data from applications to STEM graduate schools. One
prep program opposed this statistical matching. They are thus not matched, but are included in the analyses which only use surveyed prep
programs data. The ‘RDD sample’ corresponds to the sample used for the regression discontinuity analysis, where we only include students
for whom we could link to the administrative data on school admission, who had recorded grades during their first year in the prep programs,
who were in a class in which the R2 of the estimation to identify the cutoff was above 0.75 and who were within the vicinity of [-18;+18] of the
identified threshold for star class admission.
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Table B2: Descriptive Statistics for Male and Female Students (2015-2023)

Sample

All Students Male Students Female Students
(1) (2) (3)

A. Students
Female 0.25 0.00 1.00

Age 19.6 19.6 19.5
(0.8) (0.8) (0.7)

Need-based scholarship holder 0.28 0.28 0.29
Mother is high SES 0.48 0.48 0.49
Father is high SES 0.62 0.62 0.62

High School Graduation Exam
Highest honors 0.50 0.47 0.59
High honors 0.32 0.34 0.27
Honors 0.14 0.16 0.11
Percentile rank 0.78 0.77 0.82

(0.18) (0.18) (0.18)
Percentile rank re-weighted with comp. exams. coeffs. 0.87 0.87 0.88

(0.16) (0.16) (0.16)

From Paris 0.08 0.08 0.09
From Parisian area - outside Paris 0.21 0.20 0.21

Star class 0.36 0.36 0.33

Repeater 0.19 0.20 0.16

In a prep program in Paris 0.18 0.18 0.20
In a prep program in Parisian area - outside Paris 0.13 0.13 0.13

B. Prep Programs
Number of prep programs 200 200 197

in Paris 23 23 23
in Parisian area (outside Paris) 31 31 30

Number of classes 546 546 542
Star classes 185 185 184

Number of students 165,450 124,272 41,178

Notes: This table displays the descriptive statistics for all the students in our sample, and then divide our sample between male and female
students. The sample is constructed from the SCEI administrative datasets, which cover the entire universe of applicants to elite STEM graduate
schools from 2015 to 2023, excluding the biology track. Only applicants enrolled in prep programs located in France are included. We retain
only those prep programs that were present throughout the nine-year period covered by our data and had more than 10 students per year. Age
is the age of the candidates when taking the competitive entrance exam. For socio-economic status, we rely on the Department of Education’s
statistical service (DEPP), which classifies occupations into four groups by socio-economic status (SES): High SES includes white-collar pro-
fessionals, managers, CEOs, teachers, and artists; Upper-middle SES includes intermediate occupations, technicians, foremen, and supervisors;
Lower-middle SES includes farmers, artisans, shopkeepers, and white-collar employees; Low SES includes blue-collar workers and non-working
people. The SES of the child’s legal representative is used for classification. Percentile rank at the high school graduation exam are computed
using the scores re-weighted with the coefficients of the most selective competitive entrance exams to STEM graduate schools.
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Table B3: Comparison of Samples (2015-2023)

Sample

All Study Survey
(1) (2) (3)

A. Students
Female 0.25 0.26 0.26

Age 19.6 19.5 19.5
(0.8) (0.8) (0.7)

Need-based scholarship holder 0.28 0.26 0.25
Mother is high SES 0.48 0.52 0.55
Father is high SES 0.62 0.67 0.71

High School Graduation Exam
Highest honors 0.50 0.64 0.73
High honors 0.32 0.27 0.20
Honors 0.14 0.08 0.06

From Paris 0.08 0.09 0.12
From Parisian area - outside Paris 0.21 0.19 0.20

Star class 0.36 0.47 0.51

Repeater 0.19 0.18 0.15

In a prep program in Paris 0.18 0.23 0.27
In a prep program in Parisian area - outside Paris 0.13 0.10 0.17

Year of Exams
2015 0.11 0.11 0.07
2016 0.11 0.11 0.10
2017 0.11 0.11 0.11
2018 0.11 0.11 0.13
2019 0.11 0.11 0.14
2020 0.11 0.11 0.19
2021 0.11 0.11 0.22
2022 0.11 0.11 0.21
2023 0.10 0.10 0.06

B. Prep Programs
Number of prep programs 200 66 18

in Paris 23 13 5
in Parisian area (outside Paris) 31 7 4

Number of classes 546 273 80
Star classes 185 133 43

Number of students 165,450 89,079 14,746

Notes: This table compares the students across our three samples. In Column (1), we show the sample constructed from the SCEI administrative
datasets. This dataset covers the whole universe of applicants to elite STEM graduate schools from 2015 to 2023, excluding the biology track.
Only applicants enrolled in prep programs located in France are included. We retain only those prep programs that were present throughout
the nine-year period covered by our data and had more than 10 students per year. In Column (2), we display our study sample, a subset of the
sample in Column (1). This subset only includes programs × track that have both a standard class and a star class. In Column (3), we show the
subsample of prep programs that we surveyed in 2022 and 2023 to gather data on students’ grades during the prep programs.
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B2.1 Previous Academic Achievement

Figure B5: Probability of Gaining Admission to a Top 10% Most Selective STEM Graduate School, by High
School Graduation Exam Results and Gender
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Notes: This figure illustrates the probability of gaining admission to elite STEM schools within the top 10% most selective ones, by gender
and prior academic performance. Prior academic achievement is measured through results obtained at the high school graduation exam, with
weights based on coefficients of the entrance examination to the most selective STEM graduate schools (refer to Table A1).
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Figure B6: Density of Raw Grades at the High School Graduation Exam of CPGE Students, by Gender
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Notes: These histograms depict the distribution of raw grades achieved at the high school graduation exam by prep program students and
by gender. Grades in engineering science are available for only approximately 20 percent of the entire sample; this is because the majority of
students do not take up engineering studies in high school.
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B2.2 School Selectivity

Table B4: STEM Graduate Schools in the Top 10% of Selectivity or Desirability

Selectivity Desirability Desirability
(all applicants) (female applicants)

MP PC PSI PT MP PC PSI PT MP PC PSI PT

Centrale Lyon X X X X X X X X X X X X
CentraleSupélec X X X X X X X X X X X X
ISAE - SUPAERO Toulouse X X X X X X X X X X X X
Mines de Paris X X X X X X X X X X X X
Polytechnique X X X X X X X X X X X X
Ponts ParisTech X X X X X X X X X X X X
ENSTA ParisTech X X X X X X X X X X X
ENS Ulm X X X X X X X X
ENSAE Paris X X X
ENS de Lyon X X X X X X
Télécom ParisTech X X X X X X X X
Mines de Nancy X X X X
Ecole Météorologie X
Centrale Nantes X X X X X X X X X X X
ESPCI Paris X X X
Chimie ParisTech X
ENS Cachan Paris-Saclay X X X X X
Centrale Lille X X X X X X
Mines de Saint-Etienne X
Arts et Métiers X

Total number of schools 130 134 128 96 130 134 128 96 130 134 128 96

Notes: This table enumerates the STEM graduate schools which are in the top 10% of selectivity, desirability and desirability for female students.
In the first four columns, selectivity of schools is measured using the average percentile rank of admitted students at the high school graduation
exam. The subsequent eight columns use the revealed preferences of applicants as a metric for desirability, following the approach of Avery
et al. (2013). This method captures the desirability of STEM graduate schools, where more sought-after institutions garner more applications
and more often appear higher on students’ rank-ordered lists. The final four columns consider only female applicants when calculating school
desirability. For all the definitions, they are consistently defined on a track-by-track basis, acknowledging that not all tracks lead to the exact
same STEM graduate schools, even if many overlap.
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Table B5: Average Earnings of STEM Elite Grad. School Graduates, One Year After Graduation, by School
Selectivity Decile

Decile of Median earnings Median earnings Median earnings
selectivity (male alumni) (female alumni) (all alumni)

1 39,884 38,826 39,577
2 38,961 38,294 38,786
3 36,518 35,641 36,244
4 37,980 37,234 37,748
5 37,418 37,638 37,480
6 36,676 36,091 36,528
7 36,972 36,340 36,807
8 37,548 37,536 37,545
9 39,592 39,150 39,479
10 44,720 43,041 44,369

Notes: This table displays the average median earnings, by decile of selectivity, of STEM graduate schools segmented by gender for students
who graduated between 2018 and 2023. Salaries are determined based on each STEM graduate school’s median from the previous year and
include bonuses. Alumni currently enrolled in doctoral programs are excluded from this analysis. If a salary was missing for a specific year,
we inferred it from the adjacent cohort. For the most recent cohorts that haven’t yet graduated, we inferred the salary based on the previous
cohorts and the average annual salary increase for that specific school. When gender-segregated median salaries were not available, the general
median was applied to both male and female graduates. It’s noteworthy that some students from science preparatory classes choose to study at
non-engineering STEM graduate schools, such as ENS Paris, ENS Paris-Saclay, ENS Lyon, and ENS Rennes, or STEM institutions abroad. We don’t
have earnings information for these institutions. In total, earnings data is missing for 4.6% of the schools and for 2.4% of individuals who are
admitted to a STEM graduate school. The data comes from SCEI (2015-2023) and the CTI wage data (2018-2022), available on the CTI website.

Figure B7: Acceptance Rate, by Grad. School Selectivity Decile
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(b) Students ranked at the entrance exam

Notes: These figures illustrates the acceptance rate of schools, by schools selectivity decile. The acceptance rate is computed as the ratio of
candidates who met or exceeded the admission criteria — meaning their rank at the entrance exam was below the admission threshold — over
the overall number of applicants to the school (Panel a) or the number of applicants ranked at one of the entrance exam to the school (Panel b).
Acceptance rate captures offers of admission and not actual enrollment. Consequently, while a student could theoretically receive offers from
multiple schools, they will ultimately register at only one institution.
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Figure B8: Proportion of Female Students in STEM graduate schools, by Decile of Desirability of STEM
Graduate Schools
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Notes: This figure shows the proportion of female students in STEM graduate schools, by decile of desirability of STEM graduate schools. The
average number of female students in these schools is represented with the red line. Desirability of schools is defined track-by-track based on
students’ revealed preferences (Avery et al. (2013)). This method captures the desirability of STEM graduate schools because more sought-after
institutions garner more applications and more often appear higher on students’ rank-ordered lists. Figure (a) uses all application to define
school desirability while Figure (b) retains application of female students only to define school desirability.
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Figure B9: Proportion of Female Students, by Decile of Selectivity of STEM Graduate Schools and Tracks
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Notes: This figure depicts the proportion of female students in STEM graduate schools, by decile of school selectivity, across the four main tracks
under study, as well as the biology track. The average number of female students in these schools is represented with the red line. Selectivity of
schools is measured using the average percentile rank of admitted students at the high school graduation exam and is defined on a track-by-track
basis. The fifth track represents the biology track. In this track, female students constitute the majority of students (70%). However, it is excluded
from the primary analysis because, unlike the other four tracks, the biology track does not differentiate between star and non-star classes in the
second year.
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B2.3 Performance During Prep Programs

Figure B10: Gender Gap in the Probability of Being in the Top Quintile of the Class
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Notes: This figure displays the gender gap in the probability of being among high-achievers during prep programs (defined as being in the top
quintile of the class. Indeed, the top 10% of most selective STEM graduate schools actually account for roughly 20% of students since they are
bigger than the less selective schools.). To rank students, we use their weighted GPA, which was either provided directly by the prep programs
or computed using students’ grades in each subject and competitive exam coefficients between subjects.
N = 21,801.

B2.4 Complementary Decomposition Results
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Table B6: Full Sample: Decomposition Gender Gap in Access to Top 10% Most Selective Schools

Receive an offer from top 10% most selective graduate schools

(1) (2) (3) (4) (5) (6)

Female student -0.045*** -0.051*** -0.037*** -0.026*** -0.001 -0.001
(0.002) (0.002) (0.002) (0.002) (0.001) (0.001)

Decomposition -13% 31% 24% 56% 0%
% explained by additionnal control

Controls:

Demographics and Fixed-effects X X X X X X
Demographic characteristics
Program, track, and year FE

Previous ability X X X X X
HS & MS grade FE

Prep program ability X X X X
Star class

Applications X X X
Apply to top school exams

D-Day Effect X X
Percentile rank at top school exams

Preferences X
Top schools in ROLs

N 165,418 165,418 165,418 165,418 165,418 165,418
Adj-R2 0.306 0.358 0.416 0.451 0.716 0.724

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table shows the evolution of the gender gap in access to the top 10% most selective graduate schools when adding various controls.
We use the full sample of students taking high-stakes entrance exams in the SCEI data. Table 2 displays the same decomposition on the subsample
of students for whom we have prep program grades, thereby controlling for prep program ability. The decomposition raw is computed by
observing how much the gender gap is reduced when an additional control is added, compared to the raw gender gap observed in the first
column. Selectivity of schools is defined by the average percentile rank of admitted students at the high school graduation exam. Demographic
controls include geographic origin (Paris or the Parisian area), low-income status, the socio-economic status of each parent (categorized into
four groups), French nationality, repeater status, disability status, whether the student was in a science academic track during high school, the
student’s option (either engineering science or computer science), and the gender composition in the track × program. We include year, track,
and program fixed effects. Previous ability is controlled by (i) decile rank dummy variables from both high school and middle school graduation
exams’ GPAs, and (ii) quintile rank dummy variables for each grade at the high and middle school graduation exams in the subjects studied
in prep programs—mathematics, physics and chemistry, engineering science, French (both written and oral), and foreign languages. Prep
programs’ ability controls account for whether or not the applicants are in a star class, which is the only variable we have regarding academic
performance in the prep program for the full sample. Applications to top graduate schools are controlled by dummies for application to each
of the exams leading to top graduate schools, defined track by track. Performance during competitive entrance exams is controlled for by (i)
dummies for whether or not the applicant is ranked at competitive exams leading to top graduate schools and (ii) the percentile rank of their
rank in those exams, controlled linearly for each entrance exam. Preferences are controlled for by adding dummy variables for whether or not
each of the top graduate schools is ranked among students’ ranked-ordered lists of schools. The order of these variables is chosen to follow the
chronological order of decisions made by students. Standard errors are clustered at the track × program × cohort level.
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Table B7: Full Sample: Decomposition Gender Gap in Star Class in Access to Top 10% Most Selective
Schools

Receive an offer from top 10% most selective graduate schools

(1) (2) (3) (4) (5) (6)

Female student × Star class -0.039*** -0.046*** -0.046*** -0.040*** -0.002 -0.004*
(0.003) (0.003) (0.003) (0.003) (0.002) (0.002)

Decomposition -18% 0% 15% 97% -5%
% explained by additionnal control

Controls:

Demographics and Fixed-effects X X X X X X
Star class
Female student
Demographic controls
Program, track, and year FE

Previous ability X X X X X
HS & MS grade FE

Prep program ability X X X X
Star class

Applications X X X
Apply to top school exams

D-Day Effect X X
Percentile rank at top school exams

Preferences X
Top schools in ROLs

N 165,418 165,418 165,418 165,418 165,418 165,418
Adj-R2 0.391 0.417 0.417 0.451 0.716 0.724

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table shows the evolution of the gender-specific gap in star classes in access to the top 10% most selective graduate schools when
adding various controls. We include controls for star class and female students in all specifications. We use the full sample of students taking
high-stakes entrance exams in the SCEI data. Table 8 displays the same decomposition on the subsample of students for whom we have prep
program grades, thereby controlling for prep program ability. The decomposition raw is computed by observing how much the gender gap is
reduced when an additional control is added, compared to the raw gender gap observed in the first column. Selectivity of schools is defined by
the average percentile rank of admitted students at the high school graduation exam. Demographic controls include geographic origin (Paris
or the Parisian area), low-income status, the socio-economic status of each parent (categorized into four groups), French nationality, repeater
status, disability status, whether the student was in a science academic track during high school, the student’s option (either engineering science
or computer science), and the gender composition in the track × program. We include year, track, and program fixed effects. Previous ability is
controlled by (i) decile rank dummy variables from both high school and middle school graduation exams’ GPAs, and (ii) quintile rank dummy
variables for each grade at the high and middle school graduation exams in the subjects studied in prep programs—mathematics, physics and
chemistry, engineering science, French (both written and oral), and foreign languages. Applications to top graduate schools are controlled by
dummies for application to each of the exams leading to top graduate schools, defined track by track. Performance during competitive entrance
exams is controlled for by (i) dummies for whether or not the applicant is ranked at competitive exams leading to top graduate schools and (ii)
the percentile rank of their rank in those exams, controlled linearly for each entrance exam. Preferences are controlled for by adding dummy
variables for whether or not each of the top graduate schools is ranked among students’ ranked-ordered lists of schools. The order of these
variables is chosen to follow the chronological order of decisions made by students. Standard errors are clustered at the track × program × cohort
level.
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C3 Comparison of Star and Standard Classes: Complementary Results

C3.1 Complementary Results Using Surveyed Data in Prep Programs

Table C8: Access to Star Class, by Gender

(1) (2) (3)

Access to Access to Access to
star class star class star class

Baseline proba. of access .52 .52 .52

Female student -0.086∗∗∗ -0.047∗∗∗ -0.011
(0.013) (0.0079) (0.0077)

Rank in the class at the end of first year -0.029∗∗∗ -0.014∗∗∗

(0.00056) (0.0013)

First year second semester grades FE X
Year FE X X X
Track FE X X X
Program FE X X X

N 10,538 10,332 10,332
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table reports the effect of gender on access to star class. The rank in the class corresponds to the rank of student in their class at the end
of their first year in the prep program, just before the decision of admission to a star class or a standard class. In the third column, we control for
academic achievement at the second semester in the first year by adding dummy variables for each quintile in grades for mathematics, physics,
chemistry, engineering science, computer science, French, and foreign language. We include year, track and program fixed effects. Standard
errors are clustered at the track × program × cohort level.
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Table C9: Access to STEM Graduate Schools in the Top 10 Percent of Selectivity : Controlling for Grades
During the Prep Programs

(1) (2) (3)
Top 10% Top 10% Top 10%

grad. schools grad. schools grad. schools
(Selectivity) (Selectivity) (Selectivity)

Baseline proba. of access 0.31 0.31 0.31

Female student × Star class -0.040∗∗ -0.034∗∗ -0.027
(0.016) (0.017) (0.017)

Star class 0.38∗∗∗ 0.25∗∗∗ 0.17∗∗∗

(0.016) (0.018) (0.019)

Female student -0.0098 -0.018 -0.021∗

(0.0089) (0.011) (0.011)

Demographic controls X X X

First year first semester grades FE X

First year second semester grades FE X

Year FE X X X

Track FE X X X

Program FE X X X

N 12,559 10,060 9,863
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table displays the change in probability of admission to top-tier STEM graduate schools for female students in star classes. Selectivity
of schools is measured based on percentile rank at the high school graduation exam of individuals admitted at the school. The sample is
composed of all students in the prep programs we surveyed in 2022 and 2023 who we could statistically matched to SCEI outcome data (2015-
2023). In this sample, we exclusively include non-repeaters to maximize the sample size. Studying repeaters would require tracking the programs
over three years, significantly reducing the sample size. In Table C18 we show that in the full sample, effects for reapeaters and non-repeaters are
very similar. Demographic control variables include geographic origin (Paris or Parisian area), low-income status, the socio-economic status of
each parent (into four categories), French nationality, disability status, whether the student was in a science academic track during high school,
the student’s option (either engineering science or computer science), and the gender composition in the track × program. Previous ability is
controlled by (i) decile rank dummy variable for the average GPA, and (ii) quintile rank dummy variables for each grades in mathematics,
physics, chemistry, engineering science, computer science, French, and foreign languages. We include year, track and program fixed effects.
Standard errors are clustered at the track × program × cohort level.
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Table C10: Probability To Be Among the Top 20% of the Class, by Gender and Star Class Status

Before star classes During star classes

Top 20% Top 20% Top 20% Top 20%
1st Year 1st Year 2nd Year 2nd Year

1st Semester 2nd Semester 1st Semester 2nd Semester

Baseline proba. to be in top 20% 0.21 0.21 0.18 0.18

Female student × Star class 0.0016 -0.011 -0.046∗∗∗ -0.047∗∗∗

(0.017) (0.017) (0.014) (0.016)

Star class 0.39∗∗∗ 0.41∗∗∗ 0.0096∗ 0.013∗∗

(0.012) (0.014) (0.0051) (0.0059)

Female student 0.00057 0.0025 -0.017∗ -0.0065
(0.0041) (0.0042) (0.010) (0.011)

Demographic controls X X X X
Year FE X X X X
Track FE X X X X
Program FE X X X X

N 11,300 11,061 14,299 13,006
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table reports the change in the probability to be among the top 20% of the class during the prep programs for female students in future
star classes in Columns (1) and (2), and in actual star classes in Columns (3) and (4). We use percentile rank weighted GPA to rank students.
Demographic controls include geographic origin (Paris or Parisian area), low-income status, the socio-economic status of each parent (into four
categories), French nationality, disability status, whether the student was in a science academic track during high school, the student’s option
(either engineering science or computer science), and the gender composition in the track × program. The analyses in Columns (3) and (4) is
restricted to non-repeaters. Standard errors are clustered at the track × program × cohort level.
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C3.2 Detailed Control Variables

Table C11: Access to STEM graduate schools in the Top 10 Percent of Selectivity

(1) (2) (3) (4)
Top 10% Top 10% Top 10% Top 10%

grad. schools grad. schools grad. schools grad. schools
(Selectivity) (Selectivity) (Desirability) (Desirability)

Baseline proba. of access 0.22 0.22 0.23 0.23

Female student × Star class -0.031∗∗∗ -0.042∗∗∗ -0.048∗∗∗ -0.058∗∗∗

(0.0063) (0.0061) (0.0061) (0.0060)

Star class 0.31∗∗∗ 0.27∗∗∗ 0.32∗∗∗ 0.29∗∗∗

(0.0062) (0.0061) (0.0063) (0.0061)

Female student -0.021∗∗∗ -0.027∗∗∗ -0.023∗∗∗ -0.028∗∗∗

(0.0029) (0.0031) (0.0029) (0.0030)

From Paris 0.052∗∗∗ 0.049∗∗∗

(0.0065) (0.0064)

From parisian area 0.019∗∗∗ 0.016∗∗∗

(0.0056) (0.0054)

Need-based scholarship students -0.0093∗∗∗ -0.0087∗∗∗

(0.0028) (0.0028)

Repeater 0.055∗∗∗ 0.061∗∗∗

(0.0036) (0.0037)

Disabled student -0.0076 -0.0016
(0.0087) (0.0087)

Scientific high-school background -0.0070 0.0031
(0.0080) (0.0086)

Student with French nationality 0.0016 0.010
(0.0063) (0.0065)

Engineering science option 0.031∗∗ 0.050∗∗∗

(0.013) (0.014)

Computer science option 0.026∗ 0.052∗∗∗

(0.013) (0.015)

Proportion of female students in the track -0.00014 -0.00043
(0.00032) (0.00033)

Father High SES 0.023∗∗∗ 0.031∗∗∗

(0.0056) (0.0054)

Father Medium High SES 0.010 0.019∗∗∗

(0.0063) (0.0064)

Father Medium Low SES -0.0027 0.0027
(0.0057) (0.0057)

Father Low SES 0.0042 0.0074
(0.0061) (0.0061)

Mother High SES 0.022∗∗∗ 0.021∗∗∗

(0.0044) (0.0043)

Mother Medium High SES -0.00048 0.0010
(0.0050) (0.0050)

Mother Medium Low SES -0.0033 -0.0064
(0.0046) (0.0045)

Mother Low SES -0.0066 -0.0066
(0.0052) (0.0053)

MS & HS Exam Score X X

Year FE X X X X
Track FE X X X X
Program FE X X X X

N 89,079 89,065 89,079 89,065

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table displays the change in probability of admission to top-tier STEM graduate schools for female students
in star classes. Selectivity of schools is measured in two ways: Columns (1) and (2) use the average percentile rank of
admitted students at the high school graduation exam, while Columns (3) and (4) are based on the revealed preferences
of applicants (Avery et al. (2013)). Previous ability is controlled by (i) decile rank dummy variables from both high school
and middle school graduation exams GPA, and (ii) quintile rank dummy variables for each grades at the high and middle
school graduation exams at the subjects studied in prep programs — mathematics, physics and chemistry, engineering
science, French (both written and oral), and foreign languages. We include year, track and program fixed effects. Standard
errors are clustered at the track × program × cohort level.
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C3.3 Effect on Expected Earnings

Table C12: Effect on Expected Earnings

(1) (2) (3) (4)
Aggregated Aggregated Aggregated Aggregated

earnings earnings earnings earnings
(without (without (with (with
bonuses) bonuses) bonuses) bonuses)

Baseline 39,506 39,506 42,113 42,113

Female student × Star class -688.2∗∗∗ -567.6∗∗∗ -943.0∗∗∗ -774.1∗∗∗

(66.5) (68.5) (78.3) (80.2)

Star class 2399.6∗∗∗ 2362.6∗∗∗ 3133.5∗∗∗ 3079.7∗∗∗

(66.8) (65.6) (81.8) (80.2)

Female student -695.9∗∗∗ -1095.9∗∗∗

(39.8) (43.4)

Demographic Controls X X X X
MS & HS Exam Score X X X X

Year FE X X X X
Track FE X X X X
Program FE X X X X

Demographic Controls × Female student X X
MS & HS Exam Score × Female student X X

Year Fixed-Effects × Female student X X
Track Fixed-Effects × Female student X X
Program Fixed-Effects × Female student X X

N 70,173 70,173 76,560 76,560
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table reports the change in expected earnings, one year after graduation. It corresponds to the median gross annual salary of the most
recent cohort of alumni of the school. Earnings are defined at the school × cohort × gender level and are sourced from the (CTI website). When
the salary was missing for a specific year, we inferred it from the adjacent cohort. For the most recent cohorts that haven’t graduated yet, we
inferred the salary based on the previous cohort and the average salary increase per year for this specific school. Columns (1) and (2) correspond
to salary without bonuses, while Columns (3) and (4) correspond to salary with bonuses. In Columns (2) and (4), we include interactions of
all controls and fixed-effects with a gender dummy variable, allowing observable characteristics to have gender-specific effects . Demographic
controls include geographic origin (Paris or Parisian area), low-income status, the socio-economic status of each parent (into four categories),
French nationality, repeater status, disability status, whether the student was in a science academic track during high school, the student’s option
(either engineering science or computer science), and the gender composition in the track × program. Previous ability is controlled by (i) decile
rank dummy variables from both high school and middle school graduation exams GPA, and (ii) quintile rank dummy variables for each grades
at the high and middle school graduation exams at the subjects studied in prep programs — mathematics, physics and chemistry, engineering
science, French (both written and oral), and foreign languages. We include year, track and program fixed effects. Standard errors are clustered
at the track × program × cohort level.
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C3.4 Effect of Repeating, by Gender

Table C13: Access to STEM Graduate Schools in the Top 10 Percent of Selectivity, by Gender and Repeater
Status

(1) (2) (3) (4)
Top 10% Top 10% Top 10% Top 10%

grad. schools grad. schools grad. schools grad. schools
(Selectivity) (Selectivity) (Desirability) (Desirability)

Baseline proba. of access 0.15 0.15 0.16 0.16

Female student × Repeater 0.0033 0.0011 -0.0015 -0.0041
(0.0043) (0.0041) (0.0043) (0.0041)

Repeater 0.024∗∗∗ 0.037∗∗∗ 0.029∗∗∗ 0.043∗∗∗

(0.0025) (0.0024) (0.0027) (0.0025)

Female student -0.046∗∗∗ -0.038∗∗∗ -0.052∗∗∗ -0.043∗∗∗

(0.0020) (0.0019) (0.0021) (0.0019)

Demographic Controls X X
MS & HS Exam Score X X

Year FE X X X X
Track FE X X X X
Program FE X X X X

N 165,450 165,450 165,450 165,450
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table illustrates the change in the probability of admission to top-tier STEM graduate schools for female students repeating in prep
programs over the period 2015-2023. Selectivity of schools is measured in two ways: Columns (1) and (2) use the average percentile rank of
admitted students at the high school graduation exam, while Columns (3) and (4) are based on the revealed preferences of applicants (Avery et
al. (2013)). Demographic controls include geographic origin (Paris or Parisian area), low-income status, the socio-economic status of each parent
(into four categories), French nationality, star class, disability status, whether the student was in a science academic track during high school,
the student’s option (either engineering science or computer science), and the gender composition in the track × program. Previous ability is
controlled by (i) decile rank dummy variables from both high school and middle school graduation exams GPA, and (ii) quintile rank dummy
variables for each grades at the high and middle school graduation exams at the subjects studied in prep programs — mathematics, physics
and chemistry, engineering science, French (both written and oral), and foreign languages. We include year, track and program fixed effects.
Standard errors are clustered at the track × program × cohort level. For a comprehensive list of coefficients on the demographic control variables,
refer to Table C11 in the Appendix.

68



C3.5 Heterogeneity

Table C14: Heterogeneity by Income Status: Access to STEM Graduate Schools in the Top 10% of Selec-
tivity

(1) (2) (3) (4)
Top 10% Top 10% Top 10% Top 10%

grad. schools grad. schools grad. schools grad. schools
(Selectivity) (Selectivity) (Desirability) (Desirability)

Income status Low-income High-income Low-income High-income

Baseline proba. of access 0.14 0.25 0.16 0.26

Female student × Star class -0.054∗∗∗ -0.038∗∗∗ -0.072∗∗∗ -0.053∗∗∗

(0.010) (0.0070) (0.011) (0.0070)

Star class 0.23∗∗∗ 0.29∗∗∗ 0.24∗∗∗ 0.30∗∗∗

(0.0075) (0.0064) (0.0079) (0.0063)

Female student -0.022∗∗∗ -0.030∗∗∗ -0.020∗∗∗ -0.032∗∗∗

(0.0040) (0.0037) (0.0041) (0.0037)

Demographic Controls X X X X
MS & HS Exam Score X X X X

Year FE X X X X
Track FE X X X X
Program FE X X X X

N 23,409 65,656 23,409 65,656
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table reports the change in probability of admission to top-tier STEM graduate schools for female students in star classes, by parental
income status. Low income students are need-based scholarships students and high-income students are non need-based scholarships students.
Selectivity of schools is measured using the average percentile rank of admitted students at the high school graduation exam. Demographic
controls include geographic origin (Paris or Parisian area), the socio-economic status of each parent (into four categories), French nationality,
repeater status, disability status, whether the student was in a science academic track during high school, the student’s option (either engineering
science or computer science), and the gender composition in the track × program. Previous ability is controlled by (i) decile rank dummy variables
from both high school and middle school graduation exams GPA, and (ii) quintile rank dummy variables for each grades at the high and middle
school graduation exams at the subjects studied in prep programs — mathematics, physics and chemistry, engineering science, French (both
written and oral), and foreign languages. We include year, track and program fixed effects. Standard errors are clustered at the track × program
× cohort level.
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Table C15: Heterogeneity by Ability: Access to STEM Graduate Schools in the Top 10% of Selectivity

(1) (2) (3) (4)
Top 10% Top 10% Top 10% Top 10%

grad. schools grad. schools grad. schools grad. schools
(Selectivity) (Selectivity) (Selectivity) (Selectivity)

Quartile of ability Q1 Q2 Q3 Q4

Baseline proba. of access 0.02 0.11 0.25 0.49

Female student × Star class -0.036∗∗∗ -0.081∗∗∗ -0.082∗∗∗ -0.035∗∗

(0.0076) (0.0099) (0.012) (0.013)

Star class 0.078∗∗∗ 0.21∗∗∗ 0.34∗∗∗ 0.44∗∗∗

(0.0051) (0.0071) (0.0077) (0.0087)

Female student -0.0048∗∗∗ -0.0070∗ -0.016∗∗ -0.057∗∗∗

(0.0016) (0.0040) (0.0062) (0.010)

Demographic Controls X X X X
MS & HS Exam Score X X X X

Year FE X X X X
Track FE X X X X
Program FE X X X X

N 20,587 20,591 20,585 20,593
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table reports the change in probability of admission to top-tier STEM graduate schools for female students in star classes, by prior
ability status. We define ability based on re-weighted GPA at the high school graduation exam (with weights equal to competitive exams
coefficients), and present results for each quartile. Selectivity of schools is measured using the average percentile rank of admitted students
at the high school graduation exam. Demographic controls include geographic origin (Paris or Parisian area), low-income status, the socio-
economic status of each parent (into four categories), French nationality, repeater status, disability status, whether the student was in a science
academic track during high school, the student’s option (either engineering science or computer science), and the gender composition in the
track × program. Previous ability is controlled by (i) decile rank dummy variables from both high school and middle school graduation exams
GPA, and (ii) quintile rank dummy variables for each grades at the high and middle school graduation exams at the subjects studied in prep
programs — mathematics, physics and chemistry, engineering science, French (both written and oral), and foreign languages. We include year,
track and program fixed effects. Standard errors are clustered at the track × program × cohort level.

70



Table C16: Heterogeneity by Ability: Access to STEM Graduate Schools in the Top 10% of Desirability

(1) (2) (3) (4)
Top 10% Top 10% Top 10% Top 10%

grad. schools grad. schools grad. schools grad. schools
(Desirability) (Desirability) (Desirability) (Desirability)

Quartile of ability Q1 Q2 Q3 Q4

Baseline proba. of access 0.03 0.12 0.27 0.51

Female student × Star class -0.042∗∗∗ -0.092∗∗∗ -0.11∗∗∗ -0.049∗∗∗

(0.0081) (0.0100) (0.012) (0.013)

Star class 0.092∗∗∗ 0.22∗∗∗ 0.35∗∗∗ 0.45∗∗∗

(0.0056) (0.0072) (0.0078) (0.0087)

Female student -0.0063∗∗∗ -0.013∗∗∗ -0.016∗∗ -0.051∗∗∗

(0.0018) (0.0042) (0.0067) (0.0099)

Demographic Controls X X X X
MS & HS Exam Score X X X X

Year FE X X X X
Track FE X X X X
Program FE X X X X

N 20,587 20,591 20,585 20,593
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table reports the change in probability of admission to top-tier STEM graduate schools for female students in star classes, by prior
ability status. We define ability based on re-weighted GPA at the high school graduation exam (with weights equal to competitive exams
coefficients), and present results for each quartile. School desirability is based on the revealed preferences of applicants (Avery et al. (2013)).
Demographic controls include geographic origin (Paris or Parisian area), low-income status, the socio-economic status of each parent (into
four categories), French nationality, repeater status, disability status, whether the student was in a science academic track during high school,
the student’s option (either engineering science or computer science), and the gender composition in the track × program. Previous ability is
controlled by (i) decile rank dummy variables from both high school and middle school graduation exams GPA, and (ii) quintile rank dummy
variables for each grades at the high and middle school graduation exams at the subjects studied in prep programs — mathematics, physics
and chemistry, engineering science, French (both written and oral), and foreign languages. We include year, track and program fixed effects.
Standard errors are clustered at the track × program × cohort level.
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Table C17: Heterogeneity by Selectivity of the Prep Programs: Access to STEM Graduate Schools in the
Top 10% of Selectivity

(1) (2) (3) (4)
Top 10% Top 10% Top 10% Top 10%

grad. schools grad. schools grad. schools grad. schools
(Selectivity) (Selectivity) (Selectivity) (Selectivity)

Quartile of selectivity of prep. program Q1 Q2 Q3 Q4

Baseline proba. of access 0.05 0.13 0.19 0.47

Female student × Star class -0.051∗∗∗ -0.079∗∗∗ -0.075∗∗∗ 0.00016
(0.0069) (0.011) (0.012) (0.013)

Star class 0.090∗∗∗ 0.21∗∗∗ 0.31∗∗∗ 0.43∗∗∗

(0.0062) (0.0100) (0.0093) (0.0095)

Female student -0.0030 -0.015∗∗∗ -0.020∗∗∗ -0.047∗∗∗

(0.0019) (0.0038) (0.0045) (0.0090)

Demographic Controls X X X X
MS & HS Exam Score X X X X

Year FE X X X X
Track FE X X X X
Program FE X X X X

N 19,320 20,712 24,134 24,899
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table reports the change in probability of admission to top-tier STEM graduate schools for female students in star classes, by selectivity
of the prep program. Selectivity of prep programs and graduate schools is measured using the average percentile rank of admitted students
at the high school graduation exam. Demographic controls include geographic origin (Paris or Parisian area), low-income status, the socio-
economic status of each parent (into four categories), French nationality, repeater status, disability status, whether the student was in a science
academic track during high school, the student’s option (either engineering science or computer science), and the gender composition in the
track × program. Previous ability is controlled by (i) decile rank dummy variables from both high school and middle school graduation exams
GPA, and (ii) quintile rank dummy variables for each grades at the high and middle school graduation exams at the subjects studied in prep
programs — mathematics, physics and chemistry, engineering science, French (both written and oral), and foreign languages. We include year,
track and program fixed effects. Standard errors are clustered at the track × program × cohort level.
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Table C18: Access to STEM Graduate Schools in the Top 10% of Selectivity, by Repeater Status

(1) (2) (3) (4)
Top 10% Top 10% Top 10% Top 10%

grad. schools grad. schools grad. schools grad. schools
(Selectivity) (Selectivity) (Desirability) (Desirability)

Repeater status Non-repeaters Repeaters Non-repeaters Repeaters

Baseline proba. of access 0.22 0.23 0.23 0.25

Female student × Star class -0.042∗∗∗ -0.046∗∗∗ -0.057∗∗∗ -0.062∗∗∗

(0.0065) (0.014) (0.0063) (0.014)

Star class 0.27∗∗∗ 0.28∗∗∗ 0.29∗∗∗ 0.29∗∗∗

(0.0064) (0.0088) (0.0064) (0.0091)

Female student -0.026∗∗∗ -0.030∗∗∗ -0.026∗∗∗ -0.033∗∗∗

(0.0032) (0.0065) (0.0033) (0.0071)

Demographic Controls X X X X
MS & HS Exam Score X X X X

Year FE X X X X
Track FE X X X X
Program FE X X X X

N 72,727 16,268 72,727 16,268
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table reports the change in probability of admission to top-tier STEM graduate schools for female students in star classes, by repeater
status. Selectivity of schools is measured in two ways: Columns (1) and (2) use the average percentile rank of admitted students at the high school
graduation exam, while Columns (3) and (4) are based on the revealed preferences of applicants (Avery et al. (2013)). Demographic controls
include geographic origin (Paris or Parisian area), low-income status, the socio-economic status of each parent (into four categories), French
nationality, disability status, whether the student was in a science academic track during high school, the student’s option (either engineering
science or computer science), and the gender composition in the track × program. Previous ability is controlled by (i) decile rank dummy variables
from both high school and middle school graduation exams GPA, and (ii) quintile rank dummy variables for each grades at the high and middle
school graduation exams at the subjects studied in prep programs — mathematics, physics and chemistry, engineering science, French (both
written and oral), and foreign languages. We include year, track and program fixed effects. Standard errors are clustered at the track × program
× cohort level.

C3.6 Robustness Checks
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Table C19: Placebo Test: High School Graduation Exam Percentile Ranks

(1) (2) (3) (4)
GPA GPA Re-weighted Re-weighted

GPA GPA

Baseline percentile rank 0.84 0.84 0.92 0.92

Female student × Star class 0.00042 0.00030 0.0021 0.0019
(0.0018) (0.0017) (0.0015) (0.0015)

Star class 0.077∗∗∗ 0.077∗∗∗ 0.058∗∗∗ 0.057∗∗∗

(0.0017) (0.0017) (0.0016) (0.0016)

Female student 0.043∗∗∗ 0.041∗∗∗ 0.011∗∗∗ 0.0097∗∗∗

(0.0013) (0.0013) (0.0012) (0.0012)

Demographic Controls X X

Year FE X X X X
Track FE X X X X
Program FE X X X X

N 82,352 82,352 82,356 82,356
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table reports the change in percentile rank at the high school graduation exam for female students in star classes. In Columns (1)
and (2), percentile ranks are computed using raw GPA among all high school graduation exam recipients while in Columns (3) and (4), percentile
ranks are computed using re-weighted GPA, with weight equal to the most selective competitive exam coefficients, as presented in Table A1.
Demographic controls include geographic origin (Paris or Parisian area), low-income status, the socio-economic status of each parent (into four
categories), French nationality, repeater status, disability status, whether the student was in a science academic track during high school, the
student’s option (either engineering science or computer science), and the gender composition in the track × program. We include year, track and
program fixed effects. Standard errors are clustered at the track × program × cohort level.

Table C20: Placebo Test: Prep Programs GPA

(1) (2) (3) (4)
Pct. Rank Pct. Rank Pct. Rank Pct. Rank

GPA in 1st Year GPA in 1st Year GPA in 1st Year GPA in 1st Year
1st Semester 1st Semester 2nd Semester 2nd Semester

Baseline percentile rank 0.51 0.51 0.52 0.52

Female Student in Star class 0.011 0.0080 0.0049 0.00079
(0.0092) (0.0087) (0.0095) (0.0089)

Star class 0.41∗∗∗ 0.39∗∗∗ 0.43∗∗∗ 0.41∗∗∗

(0.0050) (0.0046) (0.0047) (0.0045)

Female 0.0080 0.011∗ 0.011∗ 0.012∗∗

(0.0064) (0.0063) (0.0060) (0.0059)

Demographic controls X X
Year FE X X X X
Track FE X X X X
Program FE X X X X

N 11,300 11,300 11,061 11,061
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table reports the change in percentile rank at the weighted GPA during the prep programs for female students in (future) star classes.
In Columns (1) and (2), we use the weighted GPA at the end of the first semester in the first year, while in Columns (3) and (4), we use the
weighted GPA at the end of the second semester in the first year. Demographic controls include geographic origin (Paris or Parisian area),
low-income status, the socio-economic status of each parent (into four categories), French nationality, repeater status, disability status, whether
the student was in a science academic track during high school, the student’s option (either engineering science or computer science), and the
gender composition in the track × program. Standard errors are clustered at the track × program × cohort level.
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Table C21: Access to STEM Graduate Schools in the Top 10 Percent of Desirability for Female Students

(1) (2) (3)
Top 10% Top 10% Top 10%

grad. schools grad. schools grad. schools
(Desirability) (Desirability) (Desirability)

Baseline proba. of access 0.26 0.26 0.26

Female student × Star class -0.060∗∗∗ -0.068∗∗∗ -0.055∗∗∗

(0.0062) (0.0062) (0.0066)

Star class 0.35∗∗∗ 0.31∗∗∗ 0.30∗∗∗

(0.0057) (0.0057) (0.0058)

Female student -0.016∗∗∗ -0.022∗∗∗

(0.0030) (0.0031)

Demographic Controls X X
MS & HS Exam Score X X

Year FE X X X
Track FE X X X
Program FE X X X

Demographic Controls × Female student X
MS & HS Exam Score × Female student X

Year Fixed-Effects × Female student X
Track Fixed-Effects × Female student X
Program Fixed-Effects × Female student X

N 89,079 89,065 89,065
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table reports the change in probability of admission to top-tier STEM graduate schools for female students in star classes. Selectivity of
schools is based on the revealed preferences of female applicants only (Avery et al. (2013)). In Columns (3), we include interactions of all controls
and fixed-effects with a gender dummy variable, allowing observable characteristics to have gender-specific performance impacts. Demographic
controls include geographic origin (Paris or Parisian area), low-income status, the socio-economic status of each parent (into four categories),
French nationality, repeater status, disability status, whether the student was in a science academic track during high school, the student’s option
(either engineering science or computer science), and the gender composition in the track × program. Previous ability is controlled by (i) decile
rank dummy variables from both high school and middle school graduation exams GPA, and (ii) quintile rank dummy variables for each grades
at the high and middle school graduation exams at the subjects studied in prep programs — mathematics, physics and chemistry, engineering
science, French (both written and oral), and foreign languages. We include year, track and program fixed effects. Standard errors are clustered
at the track × program × cohort level.
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Table C22: Robustness Check: Other Measures of School Selectivity

(1) (2) (3) (4)
Average Top 20% Average Top 20%

selectivity of selectivity desirability of desirability

Baseline proba. of access 83 0.39 0.92 0.42

Female student × Star class -0.40∗∗∗ -0.022∗∗∗ -0.13∗∗∗ -0.034∗∗∗

(0.095) (0.0064) (0.012) (0.0065)

Star class 6.91∗∗∗ 0.34∗∗∗ 0.88∗∗∗ 0.35∗∗∗

(0.073) (0.0054) (0.012) (0.0050)

Female student -0.69∗∗∗ -0.033∗∗∗ -0.11∗∗∗ -0.038∗∗∗

(0.076) (0.0037) (0.0072) (0.0038)

Demographic Controls X X X X
MS & HS Exam Score X X X X

Year FE X X X X
Track FE X X X X
Program FE X X X X

N 78,001 89,065 78,001 89,065
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table reports the change in average selectivity of admission school and the probability of admission to top quintile STEM graduate
schools for female students in star classes. Selectivity of schools is measured in two ways: Columns (1) and (2) use the average percentile rank
of admitted students at the high school graduation exam, while Columns (3) and (4) are based on the revealed preferences of applicants (Avery
et al. (2013)). Demographic controls include geographic origin (Paris or Parisian area), low-income status, the socio-economic status of each
parent (into four categories), French nationality, repeater status, disability status, whether the student was in a science academic track during
high school, the student’s option (either engineering science or computer science), and the gender composition in the track × program. Previous
ability is controlled by (i) decile rank dummy variables from both high school and middle school graduation exams GPA, and (ii) quintile rank
dummy variables for each grades at the high and middle school graduation exams at the subjects studied in prep programs — mathematics,
physics and chemistry, engineering science, French (both written and oral), and foreign languages. We include year, track and program fixed
effects. Standard errors are clustered at the track × program × cohort level.
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Table C23: Probit Model: Access to STEM Graduate Schools in the Top 10 Percent of Selectivity

(1) (2) (3) (4)
Top 10% Top 10% Top 10% Top 10%

grad. schools grad. schools grad. schools grad. schools
(Selectivity) (Selectivity) (Desirability) (Desirability)

Baseline proba. of access 0.22 0.22 0.23 0.23

Female student × Star class -0.058∗ -0.095∗∗∗ -0.083∗∗∗ -0.12∗∗∗

(0.032) (0.034) (0.030) (0.032)

Star class 1.62∗∗∗ 1.47∗∗∗ 1.62∗∗∗ 1.47∗∗∗

(0.019) (0.020) (0.018) (0.019)

Female student -0.13∗∗∗ -0.21∗∗∗ -0.16∗∗∗ -0.24∗∗∗

(0.027) (0.030) (0.025) (0.027)

Demographic Controls X X

MS & HS Exam Score X X

Year FE X X X X

Track FE X X X X

Program FE X X X X

N 88,438 88,424 88,438 88,424
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table displays the change in probability of admission to top-tier STEM graduate schools for female students in star classes. Selectivity
of schools is measured in two ways: Columns (1) and (2) use the average percentile rank of admitted students at the high school graduation
exam, while Columns (3) and (4) are based on the revealed preferences of applicants (Avery et al. (2013)). Previous ability is controlled by (i)
decile rank dummy variables from both high school and middle school graduation exams GPA, and (ii) quintile rank dummy variables for
each grades at the high and middle school graduation exams at the subjects studied in prep programs — mathematics, physics and chemistry,
engineering science, French (both written and oral), and foreign languages. We include year, track and program fixed effects. Standard errors
are clustered at the track × program × cohort level.
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Table C24: Robustness Check: Interaction of Fixed Effects

(1) (2) (3) (4)
Top 10% Top 10% Top 10% Top 10%

grad. schools grad. schools grad. schools grad. schools
(Selectivity) (Selectivity) (Desirability) (Desirability)

Baseline proba. of access 0.22 0.22 0.23 0.23

Female student × Star class -0.042∗∗∗ -0.040∗∗∗ -0.058∗∗∗ -0.057∗∗∗

(0.0061) (0.0061) (0.0060) (0.0061)

Star class 0.27∗∗∗ 0.28∗∗∗ 0.29∗∗∗ 0.29∗∗∗

(0.0061) (0.0062) (0.0061) (0.0062)

Female student -0.027∗∗∗ -0.052∗∗∗ -0.028∗∗∗ -0.056∗∗∗

(0.0031) (0.0087) (0.0030) (0.0087)

Demographic Controls X X X X
MS & HS Exam Score X X X X

Year FE X X X X
Track FE X X X X
Program FE X X X X

Year × Track FE X X
Year × Program FE X X
Track × Program FE X X
Year × Track × Program FE X X

N 89,065 89,065 89,065 89,065
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table reports the change in probability of admission to top-tier STEM graduate schools for female students in star classes. Selectivity of
schools is measured in two ways: Columns (1) and (2) use the average percentile rank of admitted students at the high school graduation exam,
while Columns (3) and (4) are based on the revealed preferences of applicants (Avery et al. (2013)). Demographic controls include geographic
origin (Paris or Parisian area), low-income status, the socio-economic status of each parent (into four categories), French nationality, repeater
status, disability status, whether the student was in a science academic track during high school, the student’s option (either engineering science
or computer science), and the gender composition in the track × program. Previous ability is controlled by (i) decile rank dummy variables from
both high school and middle school graduation exams GPA, and (ii) quintile rank dummy variables for each grades at the high and middle
school graduation exams at the subjects studied in prep programs — mathematics, physics and chemistry, engineering science, French (both
written and oral), and foreign languages. We include year, track and program fixed effects. We include year × track, year × program, track ×
program, and year × track × program fixed effects in Columns (2) and (4). Standard errors are clustered at the track × program × cohort level.
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Table C25: Access to STEM Graduate Schools in the Top 10% of Selectivity, by Track

(1) (2) (3) (4)
Top 10% Top 10% Top 10% Top 10%

grad. schools grad. schools grad. schools grad. schools
(Selectivity) (Selectivity) (Selectivity) (Selectivity)

Track (MP) (PC) (PSI) (PT)

Baseline proba. of access 0.28 0.20 0.21 0.05

Female student × Star class -0.039∗∗∗ -0.043∗∗∗ -0.053∗∗∗ -0.037∗∗∗

(0.011) (0.0086) (0.014) (0.012)

Star class 0.33∗∗∗ 0.26∗∗∗ 0.29∗∗∗ 0.078∗∗∗

(0.0086) (0.011) (0.014) (0.012)

Female student -0.033∗∗∗ -0.012∗∗∗ -0.038∗∗∗ -0.0046
(0.0052) (0.0045) (0.0067) (0.0037)

Demographic Controls X X X X
MS & HS Exam Score X X X X

Year FE X X X X
Track FE
Program FE X X X X

N 36,061 28,155 17,474 7,375
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table reports the change in probability of admission to top-tier STEM graduate schools for female students in star classes, by track.
Selectivity of schools is measured using the average percentile rank of admitted students at the high school graduation exam. Demographic
controls include geographic origin (Paris or Parisian area), low-income status, the socio-economic status of each parent (into four categories),
French nationality, repeater status, disability status, whether the student was in a science academic track during high school, the student’s option
(either engineering science or computer science), and the gender composition in the track × program. Previous ability is controlled by (i) decile
rank dummy variables from both high school and middle school graduation exams GPA, and (ii) quintile rank dummy variables for each grades
at the high and middle school graduation exams at the subjects studied in prep programs — mathematics, physics and chemistry, engineering
science, French (both written and oral), and foreign languages. We include year and prep program fixed effects. Standard errors are clustered at
the track × program × cohort level.
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Table C26: Access to STEM Graduate Schools in the Top 10% of Desirability, by Track

(1) (2) (3) (4)
Top 10% Top 10% Top 10% Top 10%

grad. schools grad. schools grad. schools grad. schools
(Desirability) (Desirability) (Desirability) (Desirability)

Track (MP) (PC) (PSI) (PT)

Baseline proba. of access 0.31 0.19 0.23 0.05

Female student × Star class -0.041∗∗∗ -0.063∗∗∗ -0.056∗∗∗ -0.038∗∗∗

(0.010) (0.0084) (0.014) (0.011)

Star class 0.36∗∗∗ 0.25∗∗∗ 0.30∗∗∗ 0.079∗∗∗

(0.0085) (0.011) (0.013) (0.012)

Female student -0.035∗∗∗ -0.017∗∗∗ -0.037∗∗∗ -0.0064
(0.0049) (0.0045) (0.0063) (0.0040)

Demographic Controls X X X X
MS & HS Exam Score X X X X

Year FE X X X X
Track FE
Program FE X X X X

N 36,061 28,155 17,474 7,375
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table reports the change in probability of admission to top-tier STEM graduate schools for female students in star classes, by track.
School desirability is based on the revealed preferences of applicants (Avery et al. (2013)). Demographic controls include geographic origin
(Paris or Parisian area), low-income status, the socio-economic status of each parent (into four categories), French nationality, repeater status,
disability status, whether the student was in a science academic track during high school, the student’s option (either engineering science or
computer science), and the gender composition in the track × program. Previous ability is controlled by (i) decile rank dummy variables from
both high school and middle school graduation exams GPA, and (ii) quintile rank dummy variables for each grades at the high and middle
school graduation exams at the subjects studied in prep programs — mathematics, physics and chemistry, engineering science, French (both
written and oral), and foreign languages. We include year and prep program fixed effects. Standard errors are clustered at the track × program ×
cohort level.
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Table C27: Access to STEM Graduate Schools in the Top 10 Percent of Selectivity, Controlling for Number
of Selective Exams Taken

(1) (2) (3) (4)
Top 10% Top 10% Top 10% Top 10%

grad. schools grad. schools grad. schools grad. schools
(Selectivity) (Selectivity) (Desirability) (Desirability)

Baseline proba. of access 0.22 0.22 0.23 0.23

Female students × Star class -0.044∗∗∗ -0.036∗∗∗ -0.060∗∗∗ -0.050∗∗∗

(0.0058) (0.0061) (0.0058) (0.0062)

Star class 0.23∗∗∗ 0.23∗∗∗ 0.25∗∗∗ 0.24∗∗∗

(0.0062) (0.0063) (0.0063) (0.0064)

Female students -0.022∗∗∗ -0.022∗∗∗

(0.0030) (0.0030)

Demographic Controls X X X X
MS & HS Exam Score X X X X

FE Number of Selective Exams Taken X X X X

Year FE X X X X
Track FE X X X X
Program FE X X X X

Demographic Controls × Female student X X
MS & HS Exam Score × Female student X X

Year Fixed-Effects × Female student X X
Track Fixed-Effects × Female student X X
Program Fixed-Effects × Female student X X

N 89,015 89,015 89,015 89,015
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table illustrates the change in the probability of admission to top-tier STEM graduate schools for female students in star classes
during the period from 2015 to 2023, while controlling for the number of selective the exams taken. We include fixed effects for the number of
(1) very selective exams taken (i.e., those leading to only top-tier schools) and (2) selective exams taken (i.e., those leading to at least one top-tier
school). Selectivity of schools is measured in two ways: Columns (1) and (2) use the average percentile rank of admitted students at the high
school graduation exam, while Columns (3) and (4) are based on the revealed preferences of applicants (Avery et al., 2013). In Columns (2)
and (4), we include interactions of all controls and fixed-effects with a gender dummy variable, allowing observable characteristics to have
gender-specific performance impacts. Demographic controls include geographic origin (Paris or Parisian area), low-income status, the socio-
economic status of each parent (into four categories), French nationality, repeater status, disability status, whether the student was in a science
academic track during high school, the student’s option (either engineering science or computer science), and the gender composition in the
track × program. Previous ability is controlled by (i) decile rank dummy variables from both high school and middle school graduation exams
GPA, and (ii) quintile rank dummy variables for each grades at the high and middle school graduation exams at the subjects studied in prep
programs — mathematics, physics and chemistry, engineering science, French (both written and oral), and foreign languages. We include year,
track and program fixed effects. Standard errors are clustered at the track × program × cohort level. For a comprehensive list of coefficients on
the demographic control variables, refer to Table C11 in the Appendix.
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D4 Regression Discontinuity: Complementary Results

D4.1 Validity of the Regression Discontinuity

Figure D11: First Stage of the Regression Discontinuity, by Gender

00

.2.2

.4.4

.6.6

.8.8

11

Pr
ob

ab
ilit

y 
of

 a
cc

es
s 

to
 th

e 
st

ar
 c

la
ss

-20 -10 0 10 20
Distance to the estimated cutoff rank (using weighted GPA)

(a) Male Students
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(b) Female Students

Notes: These figures display the probability of admission to a star class over the period 2015-2023, around the threshold for entering a star
class. The running variable is defined as the distance between a student’s weighted GPA and the cutoff weighted GPA for star class admission,
computed at the class × track × prep program × year level following the algorithm used in Hoekstra (2009) and in Bütikofer et al. (2023). These
figures are drawn using the rdplot Stata package developed by Calonico et al. (2017).

84



Figure D12: Density of the Running Variable Around the Threshold
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Notes: The graph illustrates the density of the running variable (students’ rank in the 1st-year class) around the star class admission threshold,
assessing potential manipulation at the cutoff via an RDDensity test. The running variable is defined as the distance between a student’s
weighted GPA and the cutoff weighted GPA for star class admission, computed at the class × track × prep program × year level using the
algorithm from Hoekstra (2009) and Bütikofer et al. (2023). These figures are drawn using the rdddensity Stata package developed by Cattaneo et
al. (2018). We exclude individuals immediately below and above the threshold due to the characteristics of our algorithm used to determine the
cutoff. By construction of our sample, we have a balanced sample around the threshold (see Section 5.2.1).
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D4.2 Complementary Results

Table D30: Admission to Top 10% Most Desirable STEM Graduate Schools, by Gender

(1) (2) (3)
Top 10 Top 10 Top 10

decile of decile of decile of
desirability desirability desirability

(All students) (Male students) (Female students)

Baseline mean 0.13 0.14 0.10
(Below cutoff)

Baseline RD estimate 0.160*** 0.226*** 0.010
(0.033) (0.035) (0.083)

Robust 95% CI [0.096 ; 0.224] [0.157 ; 0.294] [-0.152 ; 0.172]
Obs. used in estimation 2,358 1,303 475
Total number of obs. 6,782 4,934 1,848

Notes: This table displays the fuzzy non-parametric regression discontinuity estimates of the probability of admission to top-tier STEM graduate
schools. These estimates are based on Calonico et al. (2017, 2019). Desirability of schools is measured using applicants’ revealed preferences
(Avery et al. (2013)). The running variable is defined as the distance between a student’s rank and the cutoff rank for star class admission,
computed at the class × track × prep program × year. We control for program × class fixed effects. Standard errors are clustered at the level of the
running variable.

Figure D13: Admission to Top 10% Most Desirable STEM Graduate Schools, by Gender
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(a) Male Students
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(b) Female Students

Notes: These figures display the probability of admission to top-tier STEM graduate schools over the period 2015-2023, around the margin of star
class admission. Desirability of schools is measured using applicants’ revealed preferences Avery et al. (2013). The running variable is defined
as the distance between a student’s rank and the cutoff rank for star class admission, computed at the class × track × prep program × year level
following the algorithm used in Hoekstra (2009) and in Bütikofer et al. (2023). These figures are drawn using the rdplot Stata package developed
by Calonico et al. (2017).
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Table D31: Admission to Top 10% Most Desirable (For Female Students) STEM Graduate Schools, by
Gender

(1) (2) (3)
Top 10 Top 10 Top 10

decile of decile of decile of
desirability desirability desirability
for female for female for female

(All students) (Male students) (Female students)

Baseline mean 0.15 0.16 0.12
(Below cutoff)

Baseline RD estimate 0.133*** 0.180*** 0.149*
(0.023) (0.019) (0.082)

Robust 95% CI [0.087 ; 0.179] [0.143 ; 0.216] [-0.012 ; 0.311]
Obs. used in estimation 2,358 2,110 475
Total number of obs. 6,782 4,934 1,848

Notes: This table displays the fuzzy non-parametric regression discontinuity estimates of admission probability to top-tier STEM graduate
schools. These estimates are based on Calonico et al. (2017, 2019). Desirability of schools is measured using applicants’ revealed preferences,
defined with preferences of female students only (Avery et al. (2013)). The running variable is defined as the distance between a student’s rank
and the cutoff rank for star class admission, computed at the class × track × prep program × year. We control for program × class fixed effects.
Standard errors are clustered at the level of the running variable.

Figure D14: Admission to Top 10% Most Desirable (For Female Students) STEM Graduate Schools, by
Gender
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(a) Male Students
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(b) Female Students

Notes: These figures display the probability of admission to top-tier STEM graduate schools over the period 2015-2023, around the margin of
star class admission. Desirability of schools is measured using applicants’ revealed preferences, defined with preferences of female students
only (Avery et al. (2013)). The running variable is defined as the distance between a student’s rank and the cutoff rank for star class admission,
computed at the class × track × prep program × year level following the algorithm used in Hoekstra (2009) and in Bütikofer et al. (2023). These
figures are drawn using the rdplot Stata package developed by Calonico et al. (2017).
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D4.3 Robustness Checks

Table D32: RDD Robustness Check: No Clustering at the Running Variable

(1) (2) (3)
Top 10 Top 10 Top 10

decile of decile of decile of
selectivity selectivity selectivity

(All students) (Male students) (Female students)

Baseline mean 0.11 0.11 0.09
(Below cutoff)

Baseline RD estimate 0.117 0.199** -0.103
(0.078) (0.098) (0.154)

Robust 95% CI [-0.036 ; 0.270] [0.006 ; 0.392] [-0.405 ; 0.200]
Obs. used in estimation 2,358 1,303 646
Total number of obs. 6,782 4,934 1,848

Notes: This table displays the fuzzy non-parametric regression discontinuity estimates of admission probability to top-tier STEM graduate
schools. These estimates are based on Calonico et al. (2017, 2019). Selectivity of schools is measured using the percentile rank from high school
graduation exam results of admitted students. The running variable is defined as the distance between a student’s rank and the cutoff rank for
star class admission, computed at the class × track × prep program × year. We include controls for percentile rank in mathematics, physics and
foreign language at the second semester first year in prep program, and prep program fixed effects. Unlike our main analysis, here we do not
cluster standard errors at the running variable level.

Table D33: RDD Robustness Check: Local Randomization

(1) (2) (3)
Top 10 Top 10 Top 10

decile of decile of decile of
selectivity selectivity selectivity

(All students) (Male students) (Female students)

Local randomization estimate 0.21*** 0.23*** 0.13***

Number of obs. 2372 1743 629

Notes: This table displays the local randomization estimates of admission probability to top-tier STEM graduate schools. These estimates are
based on Cattaneo et al. (2016). Due to its very local nature, we must include students just around the cutoff for this robustness check. We use
only the sample of students whose distance to the estimated cutoff is between -4 and 4. Selectivity of schools is measured using the percentile
rank from high school graduation exam results of admitted students. The running variable is defined as the distance between a student’s rank
and the cutoff rank for star class admission, computed at the class × track × prep program × year.
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Figure D15: RDD Robustness Check: Evolution of the Point Estimates with the Bandwidth Size
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Notes: The graph illustrates how our main point estimates depends on the bandwidth. These point estimates are based on Calonico et al. (2017,
2019). In alignment with recent advancements in regression discontinuity literature, we rely on bias-corrected estimates and robust standard
errors. School selectivity is measured using the percentile rank from high school graduation exam results of admitted students. The running
variable is defined as the distance between a student’s rank and the cutoff rank for star class admission, computed at the class × track × prep
program × year. Our analysis includes controls for program fixed effects. Standard errors are clustered at the level of the running variable.

Table D34: RDD Robustness Check: Twice the Bandwidth Size

(1) (2) (3)
Top 10 Top 10 Top 10

decile of decile of decile of
selectivity selectivity selectivity

(All students) (Male students) (Female students)

Baseline mean 0.11 0.11 0.09
(Below cutoff)

Baseline RD estimate 0.136*** 0.193*** -0.134
(0.047) (0.053) (0.088)

Robust 95% CI [0.043 ; 0.229] [0.089 ; 0.296] [-0.307 ; 0.039]
Obs. used in estimation 3,962 2,509 947
Total number of obs. 6,782 4,934 1,848

Notes: This table displays the fuzzy non-parametric regression discontinuity estimates of admission probability to top-tier STEM graduate
schools. These estimates are based on Calonico et al. (2017, 2019). Selectivity of schools is measured using the percentile rank from high school
graduation exam results of admitted students. The running variable is defined as the distance between a student’s rank and the cutoff rank for
star class admission, computed at the class × track × prep program × year. We control for prep program fixed effects. Unlike our main analysis,
here we take twice the optimal bandwidth selected by the procedure defined by Calonico et al. (2017, 2019) for local polynomial regression
discontinuity estimators.
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Table D35: RDD Robustness Check: Thrice the Bandwidth Size

(1) (2) (3)
Top 10 Top 10 Top 10

decile of decile of decile of
selectivity selectivity selectivity

(All students) (Male students) (Female students)

Baseline mean 0.11 0.11 0.09
(Below cutoff)

Baseline RD estimate 0.090* 0.154*** -0.135**
(0.053) (0.054) (0.069)

Robust 95% CI [-0.014 ; 0.194] [0.049 ; 0.259] [-0.270 ; -0.000]
Obs. used in estimation 5,650 3,806 1,472
Total number of obs. 6,782 4,934 1,848

Notes: This table displays the fuzzy non-parametric regression discontinuity estimates of admission probability to top-tier STEM graduate
schools. These estimates are based on Calonico et al. (2017, 2019). Selectivity of schools is measured using the percentile rank from high school
graduation exam results of admitted students. The running variable is defined as the distance between a student’s rank and the cutoff rank for
star class admission, computed at the class × track × prep program × year. We control for prep program fixed effects. Unlike our main analysis,
here we take thrice the optimal bandwidth selected by the procedure defined by Calonico et al. (2017, 2019) for local polynomial regression
discontinuity estimators.

Table D36: RDD Robustness Check: Polynomial of Order 2 for the Point Estimator

(1) (2) (3)
Top 10 Top 10 Top 10

decile of decile of decile of
selectivity selectivity selectivity

(All students) (Male students) (Female students)

Baseline mean 0.11 0.11 0.09
(Below cutoff)

Baseline RD estimate 0.285*** 0.212*** -0.082
(0.076) (0.060) (0.095)

Robust 95% CI [0.135 ; 0.435] [0.094 ; 0.330] [-0.268 ; 0.103]
Obs. used in estimation 1,778 2,110 814
Total number of obs. 6,782 4,934 1,848

Notes: This table displays the fuzzy non-parametric regression discontinuity estimates of admission probability to top-tier STEM graduate
schools. These estimates are based on Calonico et al. (2017, 2019). Selectivity of schools is measured using the percentile rank from high school
graduation exam results of admitted students. The running variable is defined as the distance between a student’s rank and the cutoff rank for
star class admission, computed at the class × track × prep program × year. We control for prep program fixed effects. Unlike our main analysis,
here we use a polynomial of order 2 (instead of 1 in our main analysis) for the local polynomial used to compute the point estimator.

90



Table D37: RDD Robustness Check: Control for Unbalanced Grades and Demographics

(1) (2) (3)
Top 10 Top 10 Top 10

decile of decile of decile of
selectivity selectivity selectivity

(All students) (Male students) (Female students)

Baseline mean 0.11 0.11 0.09
(Below cutoff)

Baseline RD estimate 0.120** 0.187*** -0.104*
(0.050) (0.055) (0.063)

Robust 95% CI [0.021 ; 0.219] [0.079 ; 0.294] [-0.227 ; 0.020]
Obs. used in estimation 1,777 1,302 646
Total number of obs. 6,782 4,934 1,848

Notes: This table displays the fuzzy non-parametric regression discontinuity estimates of admission probability to top-tier STEM graduate
schools. These estimates are based on Calonico et al. (2017, 2019). Selectivity of schools is measured using the percentile rank from high school
graduation exam results of admitted students. The running variable is defined as the distance between a student’s rank and the cutoff rank for
star class admission, computed at the class × track × prep program × year. We include controls for percentile rank in mathematics, physics and
foreign language at the second semester first year in prep program,and prep program × class fixed effects. Standard errors are clustered at the
level of the running variable.

Table D38: RDD Robustness Check: Within Class and Year RDD

(1) (2) (3)
Top 10 Top 10 Top 10

decile of decile of decile of
selectivity selectivity selectivity

(All students) (Male students) (Female students)

Baseline mean 0.11 0.11 0.09
(Below cutoff)

Baseline RD estimate 0.141*** 0.268*** -0.094*
(0.046) (0.047) (0.048)

Robust 95% CI [0.050 ; 0.231] [0.176 ; 0.360] [-0.188 ; 0.000]
Obs. used in estimation 1,778 872 316
Total number of obs. 6,782 4,934 1,848

Notes: This table displays the fuzzy non-parametric regression discontinuity estimates of admission probability to top-tier STEM graduate
schools. These estimates are based on Calonico et al. (2017, 2019). Selectivity of schools is measured using the percentile rank from high school
graduation exam results of admitted students. The running variable is defined as the distance between a student’s rank and the cutoff rank
for star class admission, computed at the class × track × prep program × year. Unlike our main analysis, here we do not include prep programs
fixed effect, but we include prep programs × class × year fixed effects, since it is the level of our analysis and the one used to identify the RD
threshold.
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